

Mopidy

Mopidy [https://mopidy.com/] is an extensible music server written in Python.

Mopidy plays music from local disk, Spotify, SoundCloud, Google Play Music, and
more. You edit the playlist from any phone, tablet, or computer using a variety
of MPD and web clients.

Stream music from the cloud

Vanilla Mopidy only plays music from files and radio streams. Through
extensions [https://mopidy.com/ext/], Mopidy can play music from cloud services like Spotify,
SoundCloud, and Google Play Music.
With Mopidy’s extension support, backends for new music sources can be easily
added.

Mopidy is just a server

Mopidy is a Python application that runs in a terminal or in the background on
Linux computers or Macs that have network connectivity and audio output.
Out of the box, Mopidy is an HTTP server. If you install the Mopidy-MPD [https://mopidy.com/ext/mpd/]
extension, it becomes an MPD server too. Many additional frontends for
controlling Mopidy are available as extensions.

Pick your favorite client

You and the people around you can all connect their favorite MPD or web client
to the Mopidy server to search for music and manage the playlist together.
With a browser or MPD client, which is available for all popular operating
systems, you can control the music from any phone, tablet, or computer.

Mopidy on Raspberry Pi

The Raspberry Pi [https://www.raspberrypi.org/] is a popular device to run Mopidy on, either using
Raspbian, Ubuntu, or Arch Linux.
Pimoroni recommends Mopidy for use with their Pirate Audio [https://shop.pimoroni.com/collections/pirate-audio] audio gear for
Raspberry Pi.
Mopidy is also a significant building block in the Pi Musicbox [https://www.pimusicbox.com/] integrated
audio jukebox system for Raspberry Pi.

Mopidy is hackable

Mopidy’s extension support and Python, JSON-RPC, and JavaScript APIs make
Mopidy a perfect base for your projects.
In one hack, a Raspberry Pi was embedded in an old cassette player. The buttons
and volume control are wired up with GPIO on the Raspberry Pi, and are used to
control playback through a custom Mopidy extension. The cassettes have NFC tags
used to select playlists from Spotify.

Getting started

To get started with Mopidy, begin by reading Installation.

Getting help

If you get stuck, you can get help at the our Discourse forum [https://discourse.mopidy.com/] or in the #mopidy-users stream on Zulip
chat [https://mopidy.zulipchat.com/].

If you stumble into a bug or have a feature request, please create an issue in
the issue tracker [https://github.com/mopidy/mopidy/issues]. If you’re
unsure if it’s a bug or not, ask for help in the forum or the chat first. The
source code [https://github.com/mopidy/mopidy] may also be of help.

If you want to stay up to date on Mopidy developments, you can follow the
#mopidy-dev stream on Zulip chat [https://mopidy.zulipchat.com/] or
watch out for announcements on the Discourse forum [https://discourse.mopidy.com/].

Usage

	Installation
	Debian/Ubuntu

	Arch Linux

	Fedora

	macOS

	Install from PyPI

	Raspberry Pi

	Running
	Running in a terminal

	Running as a service

	Configuration
	Configuration file location

	Editing the configuration

	View effective configuration

	Core configuration

	Extension configuration

	Adding new configuration values

	Clients
	Web clients

	MPD clients

	MPRIS clients

	Troubleshooting
	Getting help

	Show effective configuration

	Show installed dependencies

	Debug logging

	Track metadata

	Debugging deadlocks

	Debugging GStreamer

Bundled extensions

	Mopidy-File

	Mopidy-M3U

	Mopidy-Stream

	Mopidy-HTTP

	Mopidy-SoftwareMixer

Advanced setups

	Audio sinks

	Icecast

	UPnP

About

	Changelog

	History

	Versioning

	Authors

	Sponsors

Development

	Contributing
	Asking questions

	Helping users

	Issue guidelines

	Pull request guidelines

	Development environment
	Initial setup

	Running Mopidy from Git

	Running tests

	Writing documentation

	Working on extensions

	Contribution workflow

	Extension development
	Anatomy of an extension

	cookiecutter project template

	Example README.rst

	Example setup.py

	Example __init__.py

	Example frontend

	Example backend

	Example command

	Example web application

	Running an extension

	Python conventions

	Use of Mopidy APIs

	Logging in extensions

	Making HTTP requests from extensions

	Testing extensions

	Code style

	Release procedures
	Releasing extensions

	Releasing Mopidy itself

Reference

	API reference
	Concepts

	Basics

	Web/JavaScript

	Audio

	Utilities

	mopidy command
	Synopsis

	Description

	Options

	Built in commands

	Extension commands

	Files

	Examples

	Reporting bugs

	Glossary

Indices and tables

	Index

	Module Index

Installation

There are several ways to install Mopidy. What way is best depends upon your
operating system and/or distribution:

	Debian/Ubuntu
	Distribution and architecture support

	Install from apt.mopidy.com

	Upgrading

	Installing extensions

	Arch Linux
	Install from Community

	Installing extensions

	Fedora
	Install Mopidy

	Installing extensions

	macOS
	Install from Homebrew

	Upgrading

	Installing extensions

	Install from PyPI
	Installing extensions

	Raspberry Pi
	How to for Raspbian

	Testing sound output

If you want to contribute to the development of Mopidy, you should first follow
the instructions here to install a regular install of Mopidy, then continue
with reading Contributing and Development environment.

Debian/Ubuntu

If you run a Debian based Linux distribution, like Ubuntu or Raspbian, the
easiest way to install Mopidy is from the
Mopidy APT archive [https://apt.mopidy.com/].
When installing from the APT archive, you will automatically get updates to
Mopidy in the same way as you get updates to the rest of your system.

If you’re on a Raspberry Pi running Debian or Raspberry Pi OS, the following
instructions will work for you as well. If you’re setting up a Raspberry Pi
from scratch, we have a guide for installing Debian/Raspbian and Mopidy. See
Raspberry Pi.

Distribution and architecture support

The packages in the apt.mopidy.com archive are built for:

	Debian 12 (Bookworm),
which also works for Ubuntu 23.10 and Raspberry Pi OS 2023-10-10 or newer.

The few packages that are compiled are available for multiple CPU
architectures:

	amd64

	i386

	armhf, compatible with all Raspberry Pi models.

This is just what we currently support, not a promise to continue to support
the same in the future. We will drop support for older distributions and
architectures when supporting those stops us from moving forward with the
project.

Install from apt.mopidy.com

	Add the archive’s GPG key:

sudo mkdir -p /etc/apt/keyrings
sudo wget -q -O /etc/apt/keyrings/mopidy-archive-keyring.gpg \
 https://apt.mopidy.com/mopidy.gpg

	Add the APT repo to your package sources:

sudo wget -q -O /etc/apt/sources.list.d/mopidy.list https://apt.mopidy.com/bookworm.list

	Install Mopidy and all dependencies:

sudo apt update
sudo apt install mopidy

	Now, you’re ready to run Mopidy.

Upgrading

When a new release of Mopidy is out, and you can’t wait for your system to
figure it out for itself, run the following to upgrade right away:

sudo apt update
sudo apt upgrade

Installing extensions

If you want to use any Mopidy extensions, like Spotify support or Last.fm
scrobbling, you need to install additional packages.

To list all the extensions available from apt.mopidy.com, you can run:

apt search mopidy

To install one of the listed packages, e.g. mopidy-mpd, simply run:

sudo apt install mopidy-mpd

If you cannot find the extension you want in the APT search result, you can
install it from PyPI using pip instead. You need to make sure you have
pip, the Python package installer installed:

sudo apt install python3-pip

Even if Mopidy itself is installed from APT it will correctly detect and use
extensions from PyPI installed globally on your system using:

sudo python3 -m pip install ...

For a comprehensive index of available Mopidy extensions,
including those not installable from APT,
see the Mopidy extension registry [https://mopidy.com/ext/].

Arch Linux

If you are running Arch Linux, you can install
mopidy [https://www.archlinux.org/packages/community/any/mopidy/]
from the “Community” repository, as well as
many extensions from AUR.

Install from Community

	To install Mopidy with all dependencies, you can use:

pacman -S mopidy

To upgrade Mopidy to future releases, just upgrade your system using:

pacman -Syu

	Now, you’re ready to run Mopidy.

Installing extensions

If you want to use any Mopidy extensions, like Spotify support or Last.fm
scrobbling, AUR has packages for many Mopidy extensions [https://aur.archlinux.org/packages/?K=mopidy].

To install one of the listed packages, e.g. mopidy-mpd, simply run:

yay -S mopidy-mpd

If you cannot find the extension you want in AUR, you can
install it from PyPI using pip instead.
Even if Mopidy itself is installed with pacman it will correctly detect and use
extensions from PyPI installed globally on your system using:

sudo python3 -m pip install ...

For a comprehensive index of available Mopidy extensions,
including those not installable from AUR,
see the Mopidy extension registry [https://mopidy.com/ext/].

Fedora

If you run Fedora 30 or newer you can install mopidy [https://src.fedoraproject.org/rpms/mopidy] and mopidy-mpd [https://src.fedoraproject.org/rpms/mopidy-mpd] from the standard Fedora
repositories. mopidy-spotify [https://admin.rpmfusion.org/pkgdb/package/nonfree/mopidy-spotify/]
is available from RPMFusion.

Install Mopidy

	Install Mopidy and all dependencies:

sudo dnf install mopidy

This will automatically install Mopidy-MPD as a weak dependency as well.

	Some extensions are packaged in RPMFusion. To install this repository [https://rpmfusion.org/Configuration], run:

sudo dnf install https://download1.rpmfusion.org/free/fedora/rpmfusion-free-release-$(rpm -E %fedora).noarch.rpm https://download1.rpmfusion.org/nonfree/fedora/rpmfusion-nonfree-release-$(rpm -E %fedora).noarch.rpm

	Now, you’re ready to run Mopidy.

Installing extensions

If you want to use any Mopidy extensions, you need to install additional
packages. Note that as of Feburary 2020, only Mopidy-MPD (automatically
installed) and Mopidy-Spotify (RPMFusion-nonfree) are packaged.

To install mopidy-spotify from RPMFusion-nonfree, simply run:

sudo dnf install mopidy-spotify

If you cannot find the extension you want in the repositories, you can install
it from PyPI using pip instead. Even if Mopidy itself is installed from
DNF it will correctly detect and use extensions from PyPI installed globally on
your system using:

sudo python3 -m pip install ...

For a comprehensive index of available Mopidy extensions, including those not
installable from DNF, see the Mopidy extension registry [https://mopidy.com/ext/].

macOS

If you are running macOS, you can install everything needed with Homebrew.

Install from Homebrew

	Make sure you have Homebrew [https://brew.sh/] installed.

	Make sure your Homebrew installation is up to date before you continue:

brew upgrade

Note that this will upgrade all software on your system that have been
installed with Homebrew.

	Mopidy has its own Homebrew formula repo [https://github.com/mopidy/homebrew-mopidy], called a “tap”.
To enable our Homebrew tap, run:

brew tap mopidy/mopidy

	To install Mopidy, run:

brew install mopidy

This will take some time, as it will also install Mopidy’s dependency
GStreamer, which again depends on a huge number of media codecs.

	Now, you’re ready to run Mopidy.

Upgrading

When a new release of Mopidy is out, and you can’t wait for you system to
figure it out for itself, run the following to upgrade right away:

brew upgrade

Installing extensions

If you want to use any Mopidy extensions, like Spotify support or Last.fm
scrobbling, the Homebrew tap has formulas for several Mopidy extensions as
well. Extensions installed from Homebrew will come complete with all
dependencies, both Python and non-Python ones.

To list all the extensions available from our tap, you can run:

brew search mopidy

If you cannot find the extension you want in the Homebrew search result,
you caninstall it from PyPI using pip instead.
Even if Mopidy itself is installed from Homebrew it will correctly detect and
use extensions from PyPI installed globally on your system using:

python3 -m pip install ...

Note

Homebrew documents pip3 install ... as the way to install packages from
PyPI. This has the exact same effect as python3 -m pip install
We keep to the latter variant to keep our PyPI installation instructions
identical across operating systems and distributions.

For a comprehensive index of available Mopidy extensions,
including those not installable from APT,
see the Mopidy extension registry [https://mopidy.com/ext/].

Install from PyPI

If you are on Linux, but can’t install
from the APT archive or
from the Arch Linux repository,
you can install Mopidy from PyPI using the pip installer.

If you are looking to contribute or wish to install from source using git
please see Contributing.

	First of all, you need Python 3.11 or newer. Check if you have Python and
what version by running:

python3 --version

	You need to make sure you have pip, the Python package installer. You’ll
also need a C compiler and the Python development headers to install some
Mopidy extensions.

This is how you install it on Debian/Ubuntu:

sudo apt install build-essential python3-dev python3-pip

And on Arch Linux from the official repository:

sudo pacman -S base-devel python-pip

And on Fedora Linux from the official repositories:

sudo dnf install -y gcc python3-devel python3-pip

	Then you’ll need to install GStreamer >= 1.22.0.
GStreamer is packaged for most popular Linux distributions.
Search for GStreamer in your package manager and make sure to install the
“good” and “ugly” plugin sets, as well as the Python bindings.
To be able to build the Python bindings from source,
also install the development headers for libcairo2 and libgirepository1.0.

Debian/Ubuntu

If you use Debian/Ubuntu you can install GStreamer like this:

sudo apt install \
 gir1.2-gst-plugins-base-1.0 \
 gir1.2-gstreamer-1.0 \
 gstreamer1.0-plugins-good \
 gstreamer1.0-plugins-ugly \
 gstreamer1.0-tools \
 libcairo2-dev \
 libgirepository1.0-dev \
 python3-gst-1.0

Arch Linux

If you use Arch Linux, install the following packages from the official
repository:

sudo pacman -S \
 cairo \
 gobject-introspection \
 gst-python \
 gst-plugins-good \
 gst-plugins-ugly

Fedora

If you use Fedora you can install GStreamer like this:

sudo dnf install -y \
 cairo-devel \
 gobject-introspection-devel \
 python3-gstreamer1 \
 gstreamer1-plugins-good \
 gstreamer1-plugins-ugly-free

Gentoo

If you use Gentoo you can install GStreamer like this:

emerge -av \
 dev-libs/gobject-introspection \
 dev-python/gst-python \
 media-plugins/gst-plugins-meta \
 x11-libs/cairo

gst-plugins-meta is the one that actually pulls in the plugins you want,
so pay attention to the USE flags, e.g. alsa, mp3, etc.

macOS

If you use macOS, you can install GStreamer from Homebrew:

brew install \
 cairo \
 gobject-introspection \
 gst-python \
 gst-plugins-base \
 gst-plugins-good \
 gst-plugins-ugly

	You are now ready to install the latest release of Mopidy.

If you’re installing Mopidy inside a Python virtual environment,
activate the virtualenv and run:

python3 -m pip install --upgrade mopidy

If you want to install Mopidy globally on your system, you can run:

sudo python3 -m pip install --upgrade --break-system-packages mopidy

This will use pip to install the latest release of Mopidy from PyPI [https://pypi.org/project/Mopidy].
To upgrade Mopidy in the future, just rerun the same command.

	Now, you’re ready to run Mopidy.

Installing extensions

If you want to use any Mopidy extensions, like Spotify support or Last.fm
scrobbling, you need to install additional Mopidy extensions.

You can install any Mopidy extension directly from PyPI with pip.
Search the PyPI website to find available extensions.
To install one of the listed packages, e.g. Mopidy-MPD,
inside a virtualenv, simply run:

python3 -m pip install Mopidy-MPD

To install the same package globally on your system, run:

sudo python3 -m pip install --break-system-packages Mopidy-MPD

Note that extensions installed with pip will only install Python
dependencies. Please refer to the extension’s documentation for information
about any other requirements needed for the extension to work properly.

For a comprehensive index of available Mopidy extensions,
see the Mopidy extension registry [https://mopidy.com/ext/].

Raspberry Pi

Mopidy runs on all versions of Raspberry Pi [https://www.raspberrypi.org/].
However, note that the later models are significantly more powerful than
the Raspberry Pi 1 and Raspberry Pi Zero; Mopidy will run noticably faster on
the later models.

Warning

Update needed

This page is outdated and needs to be updated for Raspberry Pi OS released 2023-10-10.

How to for Raspbian

	Download the latest Raspbian Desktop or Lite disk image from
https://www.raspberrypi.org/downloads/raspbian/.

Unless you need a full graphical desktop the Lite image is preferable since
it’s much smaller.

	Flash the Raspbian image you downloaded to your SD card.

See the Raspberry Pi installation docs [https://www.raspberrypi.org/documentation/installation/installing-images/README.md]
for instructions.

You’ll need to enable SSH if you are not connecting a monitor and a keyboard.
As of the November 2016 release, Raspbian has the SSH server disabled by
default. SSH can be enabled by placing a file named ‘ssh’, without any
extension, onto the boot partition of the SD card. See here [https://www.raspberrypi.org/documentation/remote-access/ssh/README.md] for
more details.

	If you boot with only a network cable connected, you’ll have to find the IP
address of the Pi yourself, e.g. by looking in the client list on your
router/DHCP server. When you have found the Pi’s IP address, you can SSH to
the IP address and login with the user pi and password raspberry.
Once logged in, run sudo raspi-config to start the config tool as the
root user.

	Use the raspi-config tool to setup the basics of your Pi. You might want
to do one or more of the following:

	In the top menu, change the password of the pi user.

	Under “Network Options”:

	N1: Set a hostname.

	N2: Set up WiFi credentials, if you’re going to use WiFi.

	Under “Localisation Options”:

	I1: Change locale from en_GB.UTF-8 to e.g. en_US.UTF-8, that is,
unless you’re British.

	I2: Change the time zone.

	I4: Change the WiFi country, so you only use channels allowed to use in your area.

	Under “Interfacing Options”:

	P2: Enable SSH.

	Under “Advanced Options”:

	A3: Adjust the memory split.
If you’re not going to connect a display to your Pi, you should set the
minimum value here in order to make best use of the available RAM.

	A4: Force a specific audio output.
By default, when using a HDMI display the
audio will also be output over HDMI, otherwise the 3.5mm jack will be used.

Once done, select “Finish”. Depending on what you changed you may be asked if
you want to restart your Pi, select “Yes” and then log back in again
afterwards.

If you want to change any settings later, you can simply rerun sudo
raspi-config.

	Ensure the system audio settings match the user audio settings:

sudo ln -s ~/.asoundrc /etc/asound.conf

	Install Mopidy and any Mopidy extensions you want, as described in
Debian/Ubuntu.

Note

If you used the Raspbian Desktop image you will need to add the
mopidy user to the video group:

sudo adduser mopidy video

Also, if you are not using HDMI audio you must set Mopidy’s
audio/output config value to alsasink. To do this, add the following
snippet to your config file:

[audio]
output = alsasink

Testing sound output

You can test sound output independent of Mopidy by running:

aplay /usr/share/sounds/alsa/Front_Center.wav

If you hear a voice saying “Front Center”, then your sound is working.

If you want to change your audio output setting, simply rerun sudo
raspi-config.

Running

There are two primary ways to run Mopidy. What way is best depends upon your
goals and preferences:

	Running in a terminal
	Starting

	Stopping

	Configuration

	Running as a service
	Configuration

	Service user

	Subcommands

	Service management with systemd

	Service management on Debian

	Service on macOS
	With Homebrew

	Without Homebrew

	System service and PulseAudio

Running in a terminal

For most users, it is probably preferable to run Mopidy as a service so that Mopidy is automatically started when your system starts.

The primary use case for running Mopidy manually in a terminal is that you’re
developing on Mopidy or a Mopidy extension yourself, and are interested in
seeing the log output all the time and to be able to quickly start and
restart Mopidy.

Starting

To start Mopidy manually, simply open a terminal and run:

mopidy

For a complete reference to the Mopidy commands and their command line options,
see mopidy command.

You can also get some help directly in the terminal by running:

mopidy --help

Stopping

To stop Mopidy, press CTRL+C in the terminal where you started Mopidy.

Mopidy will also shut down properly if you send it the TERM signal to the
Mopidy process, e.g. by using pkill in another terminal:

pkill mopidy

Configuration

When running Mopidy for the first time, it’ll create a configuration
file for you, usually at ~/.config/mopidy/mopidy.conf.

The ~ in the file path automatically expands to your home directory.
If your username is alice and you are running Linux, the config file will
probably be at /home/alice/.config/mopidy/mopidy.conf.

As this might vary slightly from system to system, you can check
the first few lines of output from Mopidy to confirm the exact location:

INFO 2019-12-21 23:17:31,236 [20617:MainThread] mopidy.config
 Loading config from builtin defaults
INFO 2019-12-21 23:17:31,237 [20617:MainThread] mopidy.config
 Loading config from command line options
INFO 2019-12-21 23:17:31,239 [20617:MainThread] mopidy.internal.path
 Creating dir file:///home/jodal/.config/mopidy
INFO 2019-12-21 23:17:31,240 [20617:MainThread] mopidy.config
 Loading config from builtin defaults
INFO 2019-12-21 23:17:31,241 [20617:MainThread] mopidy.config
 Loading config from command line options
INFO 2019-12-21 23:17:31,249 [20617:MainThread] mopidy.internal.path
 Creating file file:///home/jodal/.config/mopidy/mopidy.conf
INFO 2019-12-21 23:17:31,249 [20617:MainThread] mopidy.__main__
 Initialized /home/jodal/.config/mopidy/mopidy.conf with default config

To print Mopidy’s effective configuration, i.e. the combination of defaults,
your configuration file, and any command line options, you can run:

mopidy config

This will print your full effective config with passwords masked out so that
you safely can share the output with others for debugging.

Running as a service

By running Mopidy as a system service, using e.g. systemd, it will
automatically be started when your system starts. This is the preferred
way to run Mopidy for most users.

The exact way Mopidy behaves when it runs as a service might vary depending
on your operating system or distribution.
The following applies to Debian, Ubuntu, Raspbian, and Arch Linux.
Hopefully, other distributions packaging Mopidy will make sure this works
the same way on their distribution.

Configuration

When running Mopidy as a system service, configuration is read from
/etc/mopidy/mopidy.conf,
and not from ~/.config/mopidy/mopidy.conf.

To print Mopidy’s effective configuration, i.e. the combination of defaults,
your configuration file, and any command line options, you can run:

sudo mopidyctl config

This will print your full effective config with passwords masked out so that
you safely can share the output with others for debugging.

Service user

The Mopidy system service runs as the mopidy user, which is automatically
created when you install the Mopidy package. The mopidy user will need
read access to any local music you want Mopidy to play.

Note

If you’re packaging Mopidy for a new distribution, make sure to
automatically create the mopidy user when the package is installed.

Subcommands

To run Mopidy subcommands with the same user and config files as the service
uses, you should use sudo mopidyctl <subcommand>.

In other words, where someone running Mopidy manually in a terminal would run:

mopidy <subcommand>

You should instead run the following:

sudo mopidyctl <subcommand>

Note

If you’re packaging Mopidy for a new distribution, you’ll find the
mopidyctl command in the extra/mopidyctl/ directory in
the Mopidy Git repository.

Service management with systemd

On systems using systemd you can enable the Mopidy service by running:

sudo systemctl enable mopidy

This will make Mopidy automatically start when the system starts.

Mopidy is started, stopped, and restarted just like any other systemd service:

sudo systemctl start mopidy
sudo systemctl stop mopidy
sudo systemctl restart mopidy

You can check if Mopidy is currently running as a service by running:

sudo systemctl status mopidy

You can use journalctl to view Mopidy’s log,
including important error messages:

sudo journalctl -u mopidy

journalctl has many useful options,
including -f/--follow and -e/--pager-end,
so please check out journalctl --help and man journalctl.

Service management on Debian

On Debian systems (both those using systemd and not) you can enable the Mopidy
service by running:

sudo dpkg-reconfigure mopidy

Mopidy can be started, stopped, and restarted using the service command:

sudo service mopidy start
sudo service mopidy stop
sudo service mopidy restart

You can check if Mopidy is currently running as a service by running:

sudo service mopidy status

Service on macOS

On macOS, you can use launchctl to start Mopidy automatically at login
as your own user.

With Homebrew

If you installed Mopidy from Homebrew, simply run brew info mopidy and
follow the instructions in the “Caveats” section:

$ brew info mopidy
...
==> Caveats
To have launchd start mopidy/mopidy/mopidy now and restart at login:
 brew services start mopidy/mopidy/mopidy
Or, if you don't want/need a background service, you can just run:
 mopidy

See brew services --help for how to start/restart/stop the service.

Without Homebrew

If you happen to be on macOS, but didn’t install Mopidy with Homebrew, you can
get the same effect by adding the file
~/Library/LaunchAgents/mopidy.plist with the following contents:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>Label</key>
 <string>mopidy</string>
 <key>ProgramArguments</key>
 <array>
 <string>/usr/local/bin/mopidy</string>
 </array>
 <key>RunAtLoad</key>
 <true/>
 <key>KeepAlive</key>
 <true/>
</dict>
</plist>

You might need to adjust the path to the mopidy executable,
/usr/local/bin/mopidy, to match your system.

Then, to start Mopidy with launchctl right away:

launchctl load ~/Library/LaunchAgents/mopidy.plist

System service and PulseAudio

When using PulseAudio, you will typically have a PulseAudio server run by your
main user. Since Mopidy as a system service is running as its own user,
it can’t access your PulseAudio server directly.
Running PulseAudio as a system-wide daemon is discouraged by upstream
(see here [https://www.freedesktop.org/wiki/Software/PulseAudio/Documentation/User/WhatIsWrongWithSystemWide/]
for details). Rather you can configure PulseAudio and Mopidy so that Mopidy
sends the audio to the PulseAudio server already running as your main user.

First, configure PulseAudio to accept sound over TCP from localhost by
uncommenting or adding the TCP module to /etc/pulse/default.pa or
$XDG_CONFIG_HOME/pulse/default.pa (typically
~/.config/pulse/default.pa):

Network access (may be configured with paprefs, so leave this commented
here if you plan to use paprefs)
#load-module module-esound-protocol-tcp
load-module module-native-protocol-tcp auth-ip-acl=127.0.0.1
#load-module module-zeroconf-publish

Next, configure Mopidy to use this PulseAudio server:

[audio]
output = pulsesink server=127.0.0.1

After this, restart both PulseAudio and Mopidy:

pulseaudio --kill
start-pulseaudio-x11
sudo systemctl restart mopidy

If you are not running any X server, run pulseaudio --start instead of
start-pulseaudio-x11.

If you don’t want to hard code the output in your Mopidy config, you can
instead of adding any config to Mopidy add this to
~mopidy/.pulse/client.conf:

default-server=127.0.0.1

Configuration

Mopidy has a lot of config values you can tweak, but you only need to change a
few to get up and running. A complete mopidy.conf may be as simple as:

[mpd]
hostname = ::

[scrobbler]
username = alice
password = mysecret

Configuration file location

The configuration file location depends on how you run Mopidy. See either
Running in a terminal and Running as a service to find where the configuration file is
located on your system.

Editing the configuration

When you have created the configuration file, open it in a text editor, and add
the config values you want to change.

If you want to keep the default value for a config value,
you should not add it to the config file,
but leave it out so that when we change the default value in a future version,
you won’t have to change your configuration accordingly.

View effective configuration

To see what’s the effective configuration for your Mopidy installation, you can
run the config subcommand.

If you run Mopidy manually in a terminal, run:

mopidy config

If you run Mopidy as a system service, run:

sudo mopidyctl config

This will print your full effective config with passwords masked out so that
you safely can share the output with others for debugging.

Core configuration

You can find a description of all config values belonging to Mopidy’s core
below.

This is the default configuration for Mopidy itself:

[core]
cache_dir = $XDG_CACHE_DIR/mopidy
config_dir = $XDG_CONFIG_DIR/mopidy
data_dir = $XDG_DATA_DIR/mopidy
max_tracklist_length = 10000
restore_state = false

[logging]
verbosity = 0
format = %(levelname)-8s %(asctime)s [%(process)d:%(threadName)s] %(name)s\n %(message)s
color = true
config_file =

[audio]
mixer = software
mixer_volume =
output = autoaudiosink
buffer_time =

[proxy]
scheme =
hostname =
port =
username =
password =

Core section

	
core/cache_dir

	Path to base directory for storing cached data.

Mopidy and extensions will use this path to cache data that can safely be
thrown away.

If your system is running from an SD card, it can help avoid wear and
corruption of your SD card by pointing this config to another location. If
you have enough RAM, a tmpfs might be a good choice.

When running Mopidy as a regular user, this should usually be
$XDG_CACHE_DIR/mopidy, i.e. ~/.cache/mopidy.

When running Mopidy as a system service, this should usually be
/var/cache/mopidy.

	
core/config_dir

	Path to base directory for config files.

When running Mopidy as a regular user, this should usually be
$XDG_CONFIG_DIR/mopidy, i.e. ~/.config/mopidy.

When running Mopidy as a system service, this should usually be
/etc/mopidy.

	
core/data_dir

	Path to base directory for persistent data files.

Mopidy and extensions will use this path to store data that cannot be
be thrown away and reproduced without some effort. Examples include
Mopidy-Local’s index of your media library and Mopidy-M3U’s stored
playlists.

When running Mopidy as a regular user, this should usually be
$XDG_DATA_DIR/mopidy, i.e. ~/.local/share/mopidy.

When running Mopidy as a system service, this should usually be
/var/lib/mopidy.

	
core/max_tracklist_length

	Max length of the tracklist. Defaults to 10000.

The original MPD server only supports 10000 tracks in the tracklist. Some
MPD clients will crash if this limit is exceeded.

	
core/restore_state

	When set to true, Mopidy restores its last state when started.
The restored state includes the tracklist, playback history,
the playback state, the volume, and mute state.

Default is false.

Audio section

These are the available audio configurations. For specific use cases, see
Audio sinks.

	
audio/mixer

	Audio mixer to use.

The default is software, which does volume control inside Mopidy before
the audio is sent to the audio output. This mixer does not affect the
volume of any other audio playback on the system. It is the only mixer that
will affect the audio volume if you’re streaming the audio from Mopidy
through Shoutcast.

If you want to disable audio mixing set the value to none.

If you want to use a hardware mixer, you need to install a Mopidy extension
which integrates with your sound subsystem. E.g. for ALSA, install
Mopidy-ALSAMixer [https://github.com/mopidy/mopidy-alsamixer].

	
audio/mixer_volume

	Initial volume for the audio mixer.

Expects an integer between 0 and 100.

Setting the config value to blank leaves the audio mixer volume unchanged.
For the software mixer blank means 100.

	
audio/output

	Audio output to use.

Expects a GStreamer sink. Typical values are autoaudiosink,
alsasink, osssink, oss4sink, pulsesink, and shout2send,
and additional arguments specific to each sink. You can use the command
gst-inspect-1.0 to see what output properties can be set on the sink.
For example: gst-inspect-1.0 shout2send

	
audio/buffer_time

	Buffer size in milliseconds.

Expects an integer above 0.

Sets the buffer size of the GStreamer queue. If you experience buffering
before track changes, it may help to increase this, possibly by at least a
few seconds. The default is letting GStreamer decide the size, which at the
time of this writing is 1000.

Logging section

	
logging/verbosity

	Controls the detail level of the logging.

Ranges from -1 to 4. Defaults to 0.
Higher value is more verbose.

	-1 is equivalent to mopidy -q.

	0 is equivalent to mopidy.

	1 is equivalent to mopidy -v.

	2 is equivalent to mopidy -vv.

	3 is equivalent to mopidy -vvv.

	4 is equivalent to mopidy -vvvv.

	
logging/color

	Whether or not to colorize the console log based on log level. Defaults to
true.

	
logging/format

	The message format used for logging.

See the Python logging docs [https://docs.python.org/2/library/logging.config.html] for details on the format.

	
logging/config_file

	Config file that overrides all logging config values, see the Python
logging docs [https://docs.python.org/2/library/logging.config.html] for details.

	
loglevels/*

	The loglevels config section can be used to change the log level for
specific parts of Mopidy during development or debugging. Each key in the
config section should match the name of a logger. The value is the log
level to use for that logger, one of trace, debug, info,
warning, error, or critical.

	
logcolors/*

	The logcolors config section can be used to change the log color for
specific parts of Mopidy during development or debugging. Each key in the
config section should match the name of a logger. The value is the color
to use for that logger, one of black, red, green, yellow,
blue, magenta, cyan or white.

Proxy section

Not all parts of Mopidy or all Mopidy extensions respect the proxy
server configuration when connecting to the Internet. Currently, this is at
least used when Mopidy’s audio subsystem reads media directly from the network,
like when listening to Internet radio streams, and by the Mopidy-Spotify
extension. With time, we hope that more of the Mopidy ecosystem will respect
these configurations to help users on locked down networks.

	
proxy/scheme

	URI scheme for the proxy server. Typically http, https, socks4,
or socks5.

	
proxy/hostname

	Hostname of the proxy server.

	
proxy/port

	Port number of the proxy server.

	
proxy/username

	Username for the proxy server, if needed.

	
proxy/password

	Password for the proxy server, if needed.

Extension configuration

Each installed Mopidy extension adds its own configuration section to
mopidy.conf, with one or more config values that you may want to tweak.
For an overview of the available config values,
please refer to the documentation for each extension.
Most extensions can be found in the
Mopidy extension registry [https://mopidy.com/ext/].

Mopidy extensions are enabled by default when they are installed. If you want
to disable an extension without uninstalling it, all extensions support the
enabled config value even if it isn’t explicitly documented by all
extensions. If the enabled config value is set to false the extension
will not be started. For example, to disable the MPD extension, add the
following to your mopidy.conf:

[mpd]
enabled = false

Adding new configuration values

Mopidy’s config validator will validate all of its own config sections and the
config sections belonging to any installed extension. It will raise an error if
you add any config values in your config file that Mopidy doesn’t know about.
This may sound obnoxious, but it helps us detect typos in your config, and to
warn about deprecated config values that should be removed or updated.

If you’re extending Mopidy, and want to use Mopidy’s configuration
system, you can add new sections to the config without triggering the config
validator. We recommend that you choose a good and unique name for the config
section so that multiple extensions to Mopidy can be used at the same time
without any danger of naming collisions.

Clients

Once Mopidy is up and running, you need a client to control it.

Note that clients only control Mopidy.
The audio itself is not streamed to the clients,
but it is played on the computer running Mopidy.
This is by design, as Mopidy was originally modelled after MPD.
If you want to stream audio from Mopidy to another device,
the primary options are Icecast and Snapcast [https://github.com/badaix/snapcast].

The most popular ways to control Mopidy are with
web clients and with MPD clients.

In addition, alternative frontends like Mopidy-MPRIS [https://mopidy.com/ext/mpris/] and
Mopidy-Raspberry-GPIO [https://mopidy.com/ext/raspberry-gpio/] provides additional ways to control Mopidy.
Alternative frontends that use a server-client architecture
usually list relevant clients in the extension’s documentation.

Web clients

There are many clients available that use Mopidy-HTTP to control Mopidy.

Web extensions

Mopidy extensions can make additional web APIs available through
Mopidy’s builtin web server by implementing the HTTP server side API.
Web clients can use the HTTP JSON-RPC API to control Mopidy from JavaScript.

See the Mopidy extension registry [https://mopidy.com/ext/] to find a
number of web clients can be easily installed as Mopidy extensions.

Non-extension web clients

There are a few Mopidy web clients that are not installable as
Mopidy extensions:

	Apollo Player [https://github.com/samcreate/Apollo-Player]

	Mopster [https://github.com/cowbell/mopster]

Web-based MPD clients

There are several web based MPD clients, which doesn’t use the
Mopidy-HTTP frontend at all, but connect to Mopidy through the
Mopidy-MPD frontend. For a list of those, see the “Web clients”
section of the MPD wiki’s clients list [https://mpd.fandom.com/wiki/Clients].

Standalone applications

Lastly, there are Mopidy clients implemented as standalone
applications:

	Argos [https://github.com/orontee/argos]

MPD clients

MPD is the protocol used by the original MPD server project since 2003.
The Mopidy-MPD [https://mopidy.com/ext/mpd/] extension provides a server that implements
the same protocol, and is compatible with most MPD clients.

There are dozens of MPD clients available.
Please refer to the Mopidy-MPD [https://mopidy.com/ext/mpd/] extension’s documentation for an overview.

MPRIS clients

MPRIS is a specification that describes a standard D-Bus interface
for making media players available to other applications on the same system.

See the Mopidy-MPRIS [https://mopidy.com/ext/mpris/] documentation for a survey of some MPRIS clients.

Troubleshooting

When you’re debugging yourself or asking for help, there are some tools built
into Mopidy that you should know about.

Getting help

If you get stuck, you can get help at the our Discourse forum [https://discourse.mopidy.com/] or in the #mopidy-users stream on Zulip
chat [https://mopidy.zulipchat.com/].

If you stumble into a bug or have a feature request, please create an issue in
the issue tracker [https://github.com/mopidy/mopidy/issues]. If you’re
unsure if it’s a bug or not, ask for help in the forum or the chat first. The
source code [https://github.com/mopidy/mopidy] may also be of help.

Show effective configuration

The config subcommand will print your full effective
configuration the way Mopidy sees it after all defaults and all config files
have been merged into a single config document. Any secret values like
passwords are masked out, so the output of the command should be safe to share
with others for debugging.

If you run Mopidy manually in a terminal, run:

mopidy config

If you run Mopidy as a system service, run:

sudo mopidyctl config

Show installed dependencies

The deps subcommand will list the paths to and versions of
any dependency Mopidy or the extensions might need to work. This is very useful
data for checking that you’re using the right versions, and that you’re using
the right installation if you have multiple installations of a dependency on
your system.

If you run Mopidy manually in a terminal, run:

mopidy deps

If you run Mopidy as a system service, run:

sudo mopidyctl deps

Debug logging

If you run mopidy -v or mopidy -vv, mopidy -vvv,
or mopidy -vvvv Mopidy will print more and more debug log to stderr.
All four options will give you debug level output from Mopidy and extensions,
while -vv, -vvv, and -vvvv will give you more log output
from their dependencies as well.

To save a debug log to file for sharing with others, you can pipe stdout
and stderr to a file:

mopidy -vvvv 2>&1 | tee mopidy.log

If you run Mopidy as a system service, adding arguments on the command line
might be complicated. As an alternative, you can set the configuration
logging/verbosity to 4 instead of passing -vvvv on the
command line:

[logging]
verbosity = 4

If you run Mopidy as a system service and are using journald,
like most modern Linux systems, you can view the Mopidy log by running:

sudo journalctl -u mopidy

To save the output to a file for sharing, run:

sudo journalctl -u mopidy | tee mopidy.log

If you want to reduce the logging for some component, see the
docs for the loglevels/* config section.

For example, to only get error log messages from requests, even when running
with maximum verbosity, you can add the following to mopidy.conf:

[loglevels]
requests = error

Track metadata

If you find missing or incorrect metadata for a track, or are experiencing
problems during local scanning, you can manually view track metadata as seen by
Mopidy by running:

python3 -m mopidy.audio.scan path_to_your_file

It may be useful to compare that output against other music playback software
or audio tagging tools. One such tool is GStreamer’s own gst-discoverer-1.0
which can be installed with sudo apt install gstreamer1.0-plugins-base-apps
and invoked by running:

gst-discoverer-1.0 path_to_your_file

Mopidy relies on GStreamer library functions to handle audio metadata so if you
find gst-discoverer-1.0 is also unable to correctly read the metadata, but
other software succeeds, then the problem is likely to be with GStreamer itself.
In this situation you will likely find the behaviour is dependent on the version
of GStreamer being used and/or the file format.

Debugging deadlocks

If Mopidy hangs without an obvious explanation, you can send the SIGUSR1
signal to the Mopidy process. If Mopidy’s main thread is still responsive, it
will log a traceback for each running thread, showing what the threads are
currently doing. This is a very useful tool for understanding exactly how the
system is deadlocking. If you have the pkill command installed, you can use
this by simply running:

pkill -SIGUSR1 mopidy

You can read more about the deadlock debug helper in the
Pykka documentation [https://pykka.readthedocs.io/en/latest/api/debug/].

Debugging GStreamer

If you really want to dig in and debug GStreamer behaviour, then check out the
Debugging section [https://gstreamer.freedesktop.org/documentation/application-development/appendix/checklist-element.html?gi-language=python]
of GStreamer’s documentation for your options. Note that Mopidy does not
support the GStreamer command line options, like --gst-debug-level=3, but
setting GStreamer environment variables, like GST_DEBUG, works with
Mopidy. For example, to run Mopidy with debug logging and GStreamer logging at
level 3, you can run:

GST_DEBUG=3 mopidy -v

This will produce a lot of output, but given some GStreamer knowledge this is
very useful for debugging GStreamer pipeline issues. Additionally
GST_DEBUG_FILE=gstreamer.log can be used to redirect the debug
logging to a file instead of stdout.

Lastly GST_DEBUG_DUMP_DOT_DIR can be used to get descriptions of the
current pipeline in dot format. Currently we trigger a dump of the pipeline on
every completed state change:

GST_DEBUG_DUMP_DOT_DIR=. mopidy

Mopidy-File

Mopidy-File is an extension for playing music from your local music archive.
It is bundled with Mopidy and enabled by default.
It allows you to browse through your local file system.
Only files that are considered playable will be shown.
For large music collections and search functionality consider Mopidy-Local [https://mopidy.com/ext/local/] instead.

This backend handles URIs starting with file:.

This backend does not currently provide images.

Configuration

See Configuration for general help on configuring Mopidy.

[file]
enabled = true
media_dirs =
 $XDG_MUSIC_DIR|Music
 ~/|Home
show_dotfiles = false
excluded_file_extensions =
 .directory
 .html
 .jpeg
 .jpg
 .log
 .nfo
 .pdf
 .png
 .txt
 .zip
follow_symlinks = false
metadata_timeout = 1000

	
file/enabled

	If the file extension should be enabled or not.

	
file/media_dirs

	A list of directories to be browsable.
Optionally the path can be followed by | and a name that will be shown
for that path.

	
file/show_dotfiles

	Whether to show hidden files and directories that start with a dot.
Default is false.

	
file/excluded_file_extensions

	File extensions to exclude when scanning the media directory. Values
should be separated by either comma or newline.

	
file/follow_symlinks

	Whether to follow symbolic links found in file/media_dirs.
Directories and files that are outside the configured directories will not
be shown. Default is false.

	
file/metadata_timeout

	Number of milliseconds before giving up scanning a file and moving on to
the next file. Reducing the value might speed up the directory listing,
but can lead to some tracks not being shown.

Mopidy-M3U

Mopidy-M3U is an extension for reading and writing M3U playlists stored
on disk. It is bundled with Mopidy and enabled by default.

This backend handles URIs starting with m3u:.

Editing playlists

There is a core playlist API in place for editing playlists. This is supported
by a few Mopidy clients, but not through Mopidy’s MPD server yet.

It is possible to edit playlists by editing the M3U files located in the
m3u/playlists_dir directory by hand with a text editor.
See Wikipedia [https://en.wikipedia.org/wiki/M3U] for a short description
of the quite simple M3U playlist format.

If you run Mopidy manually in a terminal, the playlists are usually found in
~/.local/share/mopidy/m3u/.

If you run Mopidy as a system service, the playlists are usually found in
/var/lib/mopidy/m3u/.

Configuration

See Configuration for general help on configuring Mopidy.

[m3u]
enabled = true
playlists_dir =
base_dir = $XDG_MUSIC_DIR
default_encoding = latin-1
default_extension = .m3u8

	
m3u/enabled

	If the M3U extension should be enabled or not.

	
m3u/playlists_dir

	Path to directory with M3U files. Unset by default, in which case the
extension’s data dir is used to store playlists.

	
m3u/base_dir

	Path to base directory for resolving relative paths in M3U files.
If not set, relative paths are resolved based on the M3U file’s
location.

	
m3u/default_encoding

	Text encoding used for files with extension .m3u. Default is
latin-1. Note that files with extension .m3u8 are always
expected to be UTF-8 encoded.

	
m3u/default_extension

	The file extension for M3U playlists created using the core playlist
API. Default is .m3u8.

Mopidy-Stream

Mopidy-Stream is an extension for playing streaming music. It is bundled with
Mopidy and enabled by default.

This backend does not provide a library or playlist storage. It simply accepts
any URI added to Mopidy’s tracklist that matches any of the protocols in the
stream/protocols config value. It then tries to retrieve metadata
and play back the URI using GStreamer. For example, if you’re using an MPD
client, you’ll just have to find your clients “add URI” interface, and provide
it with the URI of a stream.

In addition to playing streams, the extension also understands how to extract
streams from a lot of playlist formats. This is convenient as most Internet
radio stations links to playlists instead of directly to the radio streams.

If you’re having trouble playing back a stream, see Show installed dependencies for
how to check if you have all relevant GStreamer plugins installed.

Configuration

See Configuration for general help on configuring Mopidy.

[stream]
enabled = true
protocols =
 http
 https
 mms
 rtmp
 rtmps
 rtsp
timeout = 5000
metadata_blacklist =

	
stream/enabled

	If the stream extension should be enabled or not.

	
stream/protocols

	Whitelist of URI schemas to allow streaming from. Values should be
separated by either comma or newline.

	
stream/timeout

	Number of milliseconds before giving up looking up stream metadata.

	
stream/metadata_blacklist

	List of URI globs to not fetch metadata from before playing. This feature
is typically needed for play once URIs provided by certain streaming
providers. Regular POSIX glob semantics apply, so http://*.example.com/*
would match all example.com sub-domains.

Mopidy-HTTP

Mopidy-HTTP is an extension that lets you control Mopidy through HTTP and
WebSockets, for example from a web client. It is bundled with Mopidy and
enabled by default.

When it is enabled it starts a web server at the port specified by the
http/port config value.

Warning

As a simple security measure, the web server is by default only available
from localhost. To make it available from other computers, change the
http/hostname config value. Before you do so, note that the HTTP
extension does not feature any form of user authentication or
authorization. Anyone able to access the web server can use the full core
API of Mopidy. Thus, you probably only want to make the web server
available from your local network or place it behind a web proxy which
takes care of user authentication. You have been warned.

Hosting web clients

Mopidy-HTTP’s web server can also host Tornado apps or any static files, for
example the HTML, CSS, JavaScript, and images needed for a web based Mopidy
client. See HTTP server side API for how to make static files or server-side
functionality from a Mopidy extension available through Mopidy’s web server.

If you’re making a web based client and want to do server side development
using some other technology than Tornado, you are of course free to run your
own web server and just use Mopidy’s web server to host the API endpoints.
But, for clients implemented purely in JavaScript, letting Mopidy host the
files is a simpler solution.

See HTTP JSON-RPC API for details on how to integrate with Mopidy over HTTP. If
you’re looking for a web based client for Mopidy, go check out
Web clients.

Configuration

See Configuration for general help on configuring Mopidy.

[http]
enabled = true
hostname = 127.0.0.1
port = 6680
zeroconf = Mopidy HTTP server on $hostname
allowed_origins =
csrf_protection = true
default_app = mopidy

	
http/enabled

	If the HTTP extension should be enabled or not.

	
http/hostname

	Which address the HTTP server should bind to.

	127.0.0.1
	Listens only on the IPv4 loopback interface

	::1
	Listens only on the IPv6 loopback interface

	0.0.0.0
	Listens on all IPv4 interfaces

	::
	Listens on all interfaces, both IPv4 and IPv6

	
http/port

	Which TCP port the HTTP server should listen to.

	
http/zeroconf

	Name of the HTTP service when published through Zeroconf. The variables
$hostname and $port can be used in the name.

If set, the Zeroconf services _http._tcp and _mopidy-http._tcp will
be published.

Set to an empty string to disable Zeroconf for HTTP.

	
http/allowed_origins

	A list of domains allowed to perform Cross-Origin Resource Sharing (CORS)
requests. This applies to both JSON-RPC and WebSocket requests. Values
should be in the format hostname:port, should not specify any scheme and
be separated by either a comma or newline. Additionally, the port should
not be specified if it is the default (80 for http, 443 for https).

Same-origin requests (i.e. requests from Mopidy’s web server) are always
allowed and so you don’t need an entry for those. However, if your requests
originate from a different web server, you will need to add an entry for
that server in this list. For example, to allow requests from a web server
at ‘http://my-web-client.example.com’ you would specify the entry
‘my-web-client.example.com’.

	
http/csrf_protection

	Enable the HTTP server’s protection against Cross-Site Request Forgery
(CSRF) from both JSON-RPC and WebSocket requests.

Disabling this will remove the requirement to set a Content-Type: application/json
header for JSON-RPC POST requests. It will also disable all same-origin
checks, effectively ignoring the http/allowed_origins config
since requests from any origin will be allowed. Lastly, all
Access-Control-Allow-* response headers will be suppressed.

This config should only be disabled if you understand the security implications
and require the HTTP server’s old behaviour.

	
http/default_app

	Redirect from the web server root to a specific web app instead of Mopidy’s
default list of web apps. The value should be the name used by the
extension when it registers its http:static or http:app extension
points. By convention, this is the the extension’s ext_name.

Mopidy-SoftwareMixer

Mopidy-SoftwareMixer is an extension for controlling audio volume in software
through GStreamer. It is the only mixer bundled with Mopidy and is enabled by
default.

If you use PulseAudio, the software mixer will control the per-application
volume for Mopidy in PulseAudio, and any changes to the per-application volume
done from outside Mopidy will be reflected by the software mixer.

If you don’t use PulseAudio, the mixer will adjust the volume internally in
Mopidy’s GStreamer pipeline.

Configuration

Multiple mixers can be installed and enabled at the same time, but only the
mixer pointed to by the audio/mixer config value will actually be
used.

See Configuration for general help on configuring Mopidy.

[softwaremixer]
enabled = true

	
softwaremixer/enabled

	If the software mixer should be enabled or not. Usually you don’t want to
change this, but instead change the audio/mixer config value to
decide which mixer is actually used.

Audio sinks

Mopidy has very few audio configurations, but the ones we
have are very powerful because they let you modify the GStreamer audio pipeline
directly.

If you have successfully installed GStreamer, and then run the
gst-inspect-1.0 command, you should see a long listing of installed
plugins, ending in a summary line:

$ gst-inspect-1.0
... long list of installed plugins ...
Total count: 233 plugins, 1339 features

Next, you should be able to produce a audible tone by running:

gst-launch-1.0 audiotestsrc ! audioresample ! autoaudiosink

If you cannot hear any sound when running this command, you won’t hear any
sound from Mopidy either, as Mopidy by default uses GStreamer’s
autoaudiosink to play audio. Thus, make this work before you file a bug
against Mopidy.

If you for some reason want to use some other GStreamer audio sink than
autoaudiosink, you can set the audio/output config value to a
partial GStreamer pipeline description describing the GStreamer sink you want
to use.

Example mopidy.conf for using OSS4:

[audio]
output = oss4sink

Again, this is the equivalent of the following gst-launch-1.0 command, so
make this work first:

gst-launch-1.0 audiotestsrc ! audioresample ! oss4sink

Icecast

If you want to play the audio on another computer than the one running Mopidy,
you can stream the audio from Mopidy through an Icecast audio streaming server.
Multiple media players can then be connected to the streaming server
simultaneously. To use the Icecast output, do the following:

Warning

The last known working version of libshout3 is v2.4.1, this is the version
available in Debian Buster. Newer versions of this library, such as those
found in Ubuntu 20.04 and Debian Bullseye are bugged and render GStreamer’s
shout2send sink broken [https://gitlab.freedesktop.org/gstreamer/gst-plugins-good/-/issues/848]
and unusable. You cannot stream from Mopidy via Icecast with the below
method when using Ubuntu 20.04 or Debian Bullseye. Consider Snapcast [https://github.com/badaix/snapcast] as an alternative solution.

	Install, configure and start the Icecast server. It can be found in the
icecast2 package in Debian/Ubuntu.

	Set the audio/output config value to encode the output audio to
MP3 (lamemp3enc) or Ogg Vorbis (audioresample ! audioconvert !
vorbisenc ! oggmux) and send it to Icecast (shout2send).

You might also need to change the shout2send default settings, run
gst-inspect-1.0 shout2send to see the available settings. Most likely
you want to change ip, username, password, and mount.

Example for MP3 streaming:

[audio]
output = lamemp3enc ! shout2send async=false mount=mopidy ip=127.0.0.1 port=8000 password=hackme

Example for Ogg Vorbis streaming:

[audio]
output = audioresample ! audioconvert ! vorbisenc ! oggmux ! shout2send async=false mount=mopidy ip=127.0.0.1 port=8000 password=hackme

Example for MP3 streaming and local audio (multiple outputs):

[audio]
output = tee name=t ! queue ! audioresample ! autoaudiosink t. ! queue ! lamemp3enc ! shout2send async=false mount=mopidy ip=127.0.0.1 port=8000 password=hackme

Other advanced setups are also possible for outputs. Basically, anything you
can use with the gst-launch-1.0 command can be plugged into
audio/output.

Known issues

	Changing track: As of Mopidy 1.2 we support gapless playback, and the
stream does no longer end when changing from one track to another.

	Previous/next: The stream ends on previous and next. See #1306 [https://github.com/mopidy/mopidy/issues/1306]
for details. This can be worked around using a fallback stream, as described
below.

	Pause: Pausing playback stops the stream. This is probably not something
we’re going to fix. This can be worked around using a fallback stream, as
described below.

	Metadata: Track metadata might be missing from the stream. For Spotify,
this should mostly work as of Mopidy 2.0.1. For other extensions,
#866 [https://github.com/mopidy/mopidy/issues/866] is the tracking issue.

Fallback stream

By using a fallback stream playing silence, you can somewhat mitigate the
known issues above.

Example Icecast configuration:

<mount>
 <mount-name>/mopidy</mount-name>
 <fallback-mount>/silence.mp3</fallback-mount>
 <fallback-override>1</fallback-override>
</mount>

You can easily find MP3 files with just silence by searching the web. The
silence.mp3 file needs to be placed in the directory defined by
<webroot>...</webroot> in the Icecast configuration.

UPnP

UPnP [https://en.wikipedia.org/wiki/Universal_Plug_and_Play] is a set of
specifications for media sharing, playing, remote control, etc, across a home
network. The specs are supported by a lot of consumer devices (like
smartphones, TVs, Xbox, and PlayStation) that are often labeled as being DLNA [https://en.wikipedia.org/wiki/DLNA] compatible or certified.

UPnP MediaRenderer

The DLNA guidelines and UPnP specifications defines several device roles, of
which Mopidy may play the role of DLNA Digital Media Renderer (DMR),
also known as an UPnP MediaRenderer.

A MediaRenderer is asked by some remote controller to play some given media,
typically served by a MediaServer.
If Mopidy was a MediaRenderer, you could use e.g. your smartphone or tablet to
make Mopidy play media.

There are two ways Mopidy can be made available as an UPnP MediaRenderer:
using Mopidy-MPD and upmpdcli, or using Mopidy-MPRIS and Rygel.

Mopidy-MPD and upmpdcli

upmpdcli [https://www.lesbonscomptes.com/upmpdcli/] is recommended, since it
is easier to setup, and offers OpenHome [http://wiki.openhome.org/wiki/OhMedia] compatibility. upmpdcli exposes a UPnP
MediaRenderer to the network, while using the MPD protocol to control Mopidy.

	Install upmpdcli. On Debian/Ubuntu:

sudo apt install upmpdcli

Alternatively, follow the instructions from the upmpdcli website.

	The default settings of upmpdcli will work with the default settings of
Mopidy-MPD. Edit /etc/upmpdcli.conf if you want to use different
ports, hosts, or other settings.

	Start upmpdcli using the command:

upmpdcli

Or, run it in the background as a service:

sudo service upmpdcli start

	An UPnP renderer should be available now.

Mopidy-MPRIS and Rygel

See the Mopidy-MPRIS [https://github.com/mopidy/mopidy-mpris] documentation
for how to setup Rygel to make Mopidy an UPnP MediaRenderer.

UPnP clients

For a long list of UPnP clients for all possible platforms, see Wikipedia’s
List of UPnP AV media servers and clients [https://en.wikipedia.org/wiki/List_of_UPnP_AV_media_servers_and_clients].

Changelog

This changelog is used to track all major changes to Mopidy.

For older releases, see History.

v4.0.0 (UNRELEASED)

Mopidy 4.0 is a backward-incompatible release because we’ve dropped support for
old versions of our dependencies and a number of deprecated APIs.

Dependencies

	Python >= 3.11 is now required. Python 3.7-3.10 are no longer supported.

	GStreamer >= 1.22.0 is now required.

	PyGObject >= 3.42 is now an explicit Python dependency, and not something we
assume you’ll install together with GStreamer.

	Pykka >= 4.0 is now required.

	Requests >= 2.28 is now required.

	Setuptools >= 66 is now required.

	Tornado >= 6.2 is now required.

	Replaced pkg_resources with importlib.metadata [https://docs.python.org/3/library/importlib.metadata.html#module-importlib.metadata] from Python’s
standard library.

Core API

Changes to the Core API may affect Mopidy clients.

Some of the changes in the Core API are related to replacing the use of
full TlTrack objects as API arguments with tracklist IDs, tlid.
This is especially relevant for remote clients, like web clients, which may
pass a lot less data over the network when using tracklist IDs in API calls.

Root object

	The mopidy.core.Core class now requires the config argument to be
present. As this argument is provided by Mopidy itself at runtime, this
should only affect the setup of extension’s test suites.

Library controller

	No changes so far.

Playback controller

	mopidy.core.PlaybackController.play()
no longer accepts TlTrack objects,
which has been deprecated since Mopidy 3.0.
Use tracklist IDs (tlid) instead.
(Fixes #1855 [https://github.com/mopidy/mopidy/issues/1855], PR: #2150 [https://github.com/mopidy/mopidy/issues/2150])

Playlist controller

	No changes so far.

Tracklist controller

	No changes so far.

Backend API

Changes to the Backend API may affect Mopidy backend extensions.

	Added mopidy.backend.LibraryProvider.lookup_many() to take a list of
URIs and return a mapping of URIs to tracks. If this method is not implemented
then repeated calls to mopidy.backend.LibraryProvider.lookup() will be
used as a fallback.

	Deprecated mopidy.backend.LibraryProvider.lookup(). Extensions should
implement mopidy.backend.LibraryProvider.lookup_many() instead.

Models

Changes to the data models may affect any Mopidy extension or client.

	No changes so far.

Audio API

Changes to the Audio API may affect a few Mopidy backend extensions.

	Removed APIs only used by Mopidy-Spotify’s bespoke audio delivery mechanism,
which has not been used since Spotify shut down their libspotify APIs in
May 2022. The removed functions/methods are:

	mopidy.audio.Audio.emit_data()

	mopidy.audio.Audio.set_appsrc()

	mopidy.audio.Audio.set_metadata()

	mopidy.audio.calculate_duration()

	mopidy.audio.create_buffer()

	mopidy.audio.millisecond_to_clocktime()

Extension support

	The command mopidy deps no longer repeats transitive dependencies
that have already been listed. This reduces the length of the command’s output
drastically. (PR: #2152 [https://github.com/mopidy/mopidy/issues/2152])

Internals

	Dropped split between the main and develop branches. We now use
main for all development, and have removed the develop branch.

	Added type hints to most of the source code.

	Switched from mypy to pyright for type checking.

v3.4.2 (2023-11-01)

	Deps: Python 3.11 and 3.12 are now included in the testing matrix.

	M3U: Stop following symlinks when file/follow_symlinks is false.
(PR: #2094 [https://github.com/mopidy/mopidy/issues/2094])

	zeroconf: Fix exception on shutdown if dbus is not installed.

	Docs: Fix crash when building docs on recent Sphinx versions.

	Dev: Make stacktraces from deprecation warnings include the offending call
site, to help upgrade API usage in extensions.

	Dev: Upgrade CI workflows to fix Node.js 12 deprecation notices and avoid
Codecov’s bash uploader.

	Dev: Make tests pass on macOS. (PR: #2092 [https://github.com/mopidy/mopidy/issues/2092])

	Dev: Incease test coverage of Mopidy-File to 100%. (PR: #2096 [https://github.com/mopidy/mopidy/issues/2096])

	Dev: Added "tox -e ci”, to allow easy CI check before git push.

v3.4.1 (2022-12-07)

	HTTP: Fix non-optional http/allowed_origins config setting. (PR:
#2066 [https://github.com/mopidy/mopidy/issues/2066])

v3.4.0 (2022-11-28)

	Config: Handle DBus “Algorithm plain is not supported” error. (PR: #2061 [https://github.com/mopidy/mopidy/issues/2061])

	File: Fix uppercase file/excluded_file_extensions. (PR:
#2063 [https://github.com/mopidy/mopidy/issues/2063])

	Add mopidy.backend.PlaybackProvider.on_source_setup() which can be
implemented by Backend playback providers that want to set GStreamer source
properties in the source-setup callback. (PR: #2060 [https://github.com/mopidy/mopidy/issues/2060])

	HTTP: Improve handling of http/allowed_origins config setting. (PR: #2054 [https://github.com/mopidy/mopidy/issues/2054])

v3.3.0 (2022-04-29)

	Core: Fixes invalid verbosity logging levels. (Fixes: #1947 [https://github.com/mopidy/mopidy/issues/1947],
PR: #2021 [https://github.com/mopidy/mopidy/issues/2021])

	Core: Fix TypeError exception when playing track with unnamed artists.
(Fixes: #1991 [https://github.com/mopidy/mopidy/issues/1991], PR: #2012 [https://github.com/mopidy/mopidy/issues/2012])

	Core: Fix startup crash when loading invalid extensions. (PR:
#1990 [https://github.com/mopidy/mopidy/issues/1990])

	Core: Fix error-handling when fetching backend support info. (PR:
#1964 [https://github.com/mopidy/mopidy/issues/1964])

	Core: Align values supported by the field argument to
mopidy.core.LibraryController.get_distinct() with Mopidy search query
fields, with the exception of ‘any’. Deprecated field ‘track’ with the
goal of removing it in the next major release, use ‘track_name’ instead.
Backends should support both track and track_name until they require
a version of Mopidy where track has been removed.
(Fixes: #1900 [https://github.com/mopidy/mopidy/issues/1900], PR: #1899 [https://github.com/mopidy/mopidy/issues/1899])

	Core: Add musicbrainz_albumid, musicbrainz_artistid,
musicbrainz_trackid, and disc_no to the permitted search query
fields. (Fixes: #1900 [https://github.com/mopidy/mopidy/issues/1900], PR: #1899 [https://github.com/mopidy/mopidy/issues/1899])

	Audio: Fix TypeError when handling create output pipeline errors.
(Fixes: #1924 [https://github.com/mopidy/mopidy/issues/1924], PR: #2040 [https://github.com/mopidy/mopidy/issues/2040])

	Audio: Fix seek when stopped. (Fixes: #2005 [https://github.com/mopidy/mopidy/issues/2005], PR: #2006 [https://github.com/mopidy/mopidy/issues/2006])

	Config: Fix support for inline comments, a regression introduced during
our Python 3 migration. (Fixes: #1868 [https://github.com/mopidy/mopidy/issues/1868], PR: #2041 [https://github.com/mopidy/mopidy/issues/2041])

	HTTP: Fix missing CORS headers on RPC response. (Fixes: #2028 [https://github.com/mopidy/mopidy/issues/2028],
PR: #2029 [https://github.com/mopidy/mopidy/issues/2029])

	HTTP: Improve CSRF protection Content-Type check. (PR: #1997 [https://github.com/mopidy/mopidy/issues/1997])

	HTTP: Fix support for websocket clients connecting/disconnecting
during broadcast. (PR: #1993 [https://github.com/mopidy/mopidy/issues/1993])

	Add Python 3.10 to our test matrix.

	Core: Added and improved configuration parsing code for extension
developers. (PR: #2010 [https://github.com/mopidy/mopidy/issues/2010])

v3.2.0 (2021-07-08)

	Initial type annotations and mypy support. (PR: #1842 [https://github.com/mopidy/mopidy/issues/1842])

	Move CI to GitHub Actions (PR: #1951 [https://github.com/mopidy/mopidy/issues/1951])

	Fix logging during extension loading (Fixes: #1958 [https://github.com/mopidy/mopidy/issues/1958], PR:
#1960 [https://github.com/mopidy/mopidy/issues/1960])

	Fix appsrc track change after live-mode previously set. (Fixes:
#1969 [https://github.com/mopidy/mopidy/issues/1969], PR: #1971 [https://github.com/mopidy/mopidy/issues/1971])

v3.1.1 (2020-12-26)

	Fix crash when extracting tags using gst-python >= 1.18. (PR:
#1948 [https://github.com/mopidy/mopidy/issues/1948])

v3.1.0 (2020-12-16)

	Add Python 3.9 to our test matrix.

	Add mopidy.backend.PlaybackProvider.should_download() which can be
implemented by playback providers that want to use GStreamer’s download
buffering strategy for their URIs. (PR: #1888 [https://github.com/mopidy/mopidy/issues/1888])

	Audio: Fix memory leak when converting GStreamer sample type tags.
(Fixes: #1827 [https://github.com/mopidy/mopidy/issues/1827], PR: #1929 [https://github.com/mopidy/mopidy/issues/1929])

	Turn off strict parsing of *.pls playlist files. This was a regression
that happened during the migration to Python 3. (PR: #1923 [https://github.com/mopidy/mopidy/issues/1923])

	Make the systemd unit that ships with Mopidy wait for an Internet
connection before starting Mopidy. When used by distribution packages, this
can help avoid that extensions try to connect to cloud services before the
machine’s Internet connection is ready for use. (PR: #1946 [https://github.com/mopidy/mopidy/issues/1946])

v3.0.2 (2020-04-02)

Bugfix release.

	Core: Reset stream title on receipt of any title audio tag change.
(Fixes: #1871 [https://github.com/mopidy/mopidy/issues/1871], PR: #1875 [https://github.com/mopidy/mopidy/issues/1875])

	Core: Hide the methods mopidy.core.Core.setup() and
mopidy.core.Core.teardown() from other actors and JSON-RPC API
clients. The methods have always been clearly documented as internal. (PR:
#1865 [https://github.com/mopidy/mopidy/issues/1865])

	Config: Log a warning if unknown config sections are found. (Fixes:
#1878 [https://github.com/mopidy/mopidy/issues/1878], PR: #1890 [https://github.com/mopidy/mopidy/issues/1890])

	Config: Fix crash when reading values from keyring. (PR: #1887 [https://github.com/mopidy/mopidy/issues/1887])

	Various documentation updates.

v3.0.1 (2019-12-22)

Bugfix release.

	Remove mopidy.local migration helper. (Fixes: #1861 [https://github.com/mopidy/mopidy/issues/1861], PR: #1862 [https://github.com/mopidy/mopidy/issues/1862])

v3.0.0 (2019-12-22)

The long-awaited Mopidy 3.0 is finally here, just in time for the Mopidy
project’s 10th anniversary on December 23rd!

Mopidy 3.0 is a backward-incompatible release in a pretty significant way:
Mopidy no longer runs on Python 2.

Mopidy 3.0 requires Python 3.7 or newer.

While extensions have been able to continue working without changes
throughout the 1.x and 2.x series of Mopidy, this time is different:

	All extensions must be updated to work on Python 3.7 and newer.

	Some extensions need to replace their use of a few long-deprecated APIs
that we’ve removed. See below for details.

	Extension maintainers are also encouraged to update their project’s setup to
match our refreshed extension cookiecutter [https://github.com/mopidy/cookiecutter-mopidy-ext].

In parallel with the development of Mopidy 3.0, we’ve coordinated with a few
extension maintainers and upgraded almost 20 of the most popular extensions.
These will all be published shortly after the release of Mopidy 3.0.

We’ve also built a new extension registry [https://mopidy.com/ext/], where you can quickly track what
extensions are ready for Python 3.

In other news, the Mopidy-MPD [https://mopidy.com/ext/mpd/] and Mopidy-Local [https://mopidy.com/ext/local/] extensions have grown up
and moved out to flourish as independent extension projects.
After the move, Mopidy-Local merged with Mopidy-Local-SQLite and
Mopidy-Local-Images, which are now both a part of the Mopidy-Local extension.

Dependencies

	Python >= 3.7 is now required. Python 2.7 is no longer supported.

	GStreamer >= 1.14.0 is now required.

	Pykka >= 2.0.1 is now required.

	Tornado >= 4.4 is now required. The upper boundary (< 6) has been removed.

	We now use a number of constants and functions from GLib instead of their
deprecated equivalents in GObject. The exact version of PyGObject and
GLib that makes these constants and functions available in the new location
is not known, but is believed to have been released in 2015 or earlier.

Logging

	The command line option mopidy --save-debug-log and the
configuration logging/debug_file have been removed.
To save a debug log for sharing, run mopidy -vvvv 2>&1 | tee mopidy.log
or equivalent. (Fixes: #1452 [https://github.com/mopidy/mopidy/issues/1452], PR: #1783 [https://github.com/mopidy/mopidy/issues/1783])

	Replaced the configurations logging/console_format
and logging/debug_format with
the single configuration logging/format.
It defaults to the same format as the old debug format.
(Fixes: #1452 [https://github.com/mopidy/mopidy/issues/1452], PR: #1783 [https://github.com/mopidy/mopidy/issues/1783])

	Added configuration logging/verbosity to be able to control
logging verbosity from the configuration file,
in addition to passing -q or -v on the command line.
(Fixes: #1452 [https://github.com/mopidy/mopidy/issues/1452], PR: #1783 [https://github.com/mopidy/mopidy/issues/1783])

Core API

	Removed properties, methods, and arguments that have been deprecated since
1.0, released in 2015.
Everything removed already has a replacement, that should be used instead.
See below for a full list of removals and replacements.
(Fixes: #1083 [https://github.com/mopidy/mopidy/issues/1083], #1461 [https://github.com/mopidy/mopidy/issues/1461], PR: #1768 [https://github.com/mopidy/mopidy/issues/1768], #1769 [https://github.com/mopidy/mopidy/issues/1769])

Root object

	Removed properties, use getter/setter instead:

	mopidy.core.Core.uri_schemes

	mopidy.core.Core.version

Library controller

	Removed methods:

	mopidy.core.LibraryController.find_exact():
Use search()
with the keyword argument exact=True instead.

	Removed the uri argument to
mopidy.core.LibraryController.lookup().
Use the uris argument instead.

	Removed the support for passing the search query as keyword arguments to
mopidy.core.LibraryController.search().
Use the query argument instead.

	mopidy.core.LibraryController.search() now returns an empty result
if there is no query. Previously, it returned the full music library.
This is not feasible for online music services and has thus been deprecated
since 1.0.

Playback controller

	Removed properties, use getter/setter instead:

	mopidy.core.PlaybackController.current_tl_track

	mopidy.core.PlaybackController.current_track

	mopidy.core.PlaybackController.state

	mopidy.core.PlaybackController.time_position

	Moved to the mixer controller:

	mopidy.core.PlaybackController.get_mute():
Use get_mute().

	mopidy.core.PlaybackController.get_volume():
Use get_volume().

	mopidy.core.PlaybackController.set_mute():
Use set_mute().

	mopidy.core.PlaybackController.set_volume():
Use set_volume().

	mopidy.core.PlaybackController.mute:
Use get_mute()
and set_mute().

	mopidy.core.PlaybackController.volume:
Use get_volume()
and set_volume().

	Deprecated the tl_track argument to
mopidy.core.PlaybackController.play(), with the goal of removing it in
the next major release. Use the tlid argument instead.
(Fixes: #1773 [https://github.com/mopidy/mopidy/issues/1773], PR: #1786 [https://github.com/mopidy/mopidy/issues/1786], #1854 [https://github.com/mopidy/mopidy/issues/1854])

Playlist controller

	Removed properties, use getter/setter instead:

	mopidy.core.PlaylistController.playlists

	Removed methods:

	mopidy.core.PlaylistsController.filter():
Use as_list() and filter yourself.

	mopidy.core.PlaylistsController.get_playlists():
Use as_list() and
get_items().

Tracklist controller

	Removed properties, use getter/setter instead:

	mopidy.core.TracklistController.tl_tracks

	mopidy.core.TracklistController.tracks

	mopidy.core.TracklistController.length

	mopidy.core.TracklistController.version

	mopidy.core.TracklistController.consume

	mopidy.core.TracklistController.random

	mopidy.core.TracklistController.repeat

	mopidy.core.TracklistController.single

	Removed the uri argument to
mopidy.core.TracklistController.add().
Use the uris argument instead.

	Removed the support for passing filter criteria as keyword arguments to
mopidy.core.TracklistController.filter().
Use the criteria argument instead.

	Removed the support for passing filter criteria as keyword arguments to
mopidy.core.TracklistController.remove().
Use the criteria argument instead.

	Deprecated methods, with the goal of removing them in the next major release:
(Fixes: #1773 [https://github.com/mopidy/mopidy/issues/1773], PR: #1786 [https://github.com/mopidy/mopidy/issues/1786], #1854 [https://github.com/mopidy/mopidy/issues/1854])

	mopidy.core.TracklistController.eot_track().
Use get_eot_tlid() instead.

	mopidy.core.TracklistController.next_track().
Use get_next_tlid() instead.

	mopidy.core.TracklistController.previous_track().
Use get_previous_tlid() instead.

	The tracks argument to mopidy.core.TracklistController.add() has
been deprecated since Mopidy 1.0. It is still deprecated, with the goal of
removing it in the next major release. Use the uris argument instead.

Backend API

	Add mopidy.backend.PlaybackProvider.is_live() which can be
implemented by playback providers that want to mark their URIs as
live streams that should not be buffered. (PR: #1845 [https://github.com/mopidy/mopidy/issues/1845])

Models

	Remove .copy() method on all model classes.
Use the .replace() method instead.
(Fixes: #1464 [https://github.com/mopidy/mopidy/issues/1464], PR: #1774 [https://github.com/mopidy/mopidy/issues/1774])

	Remove mopidy.models.Album.images.
Clients should use mopidy.core.LibraryController.get_images() instead.
Backends should implement mopidy.backend.LibraryProvider.get_images().
(Fixes: #1464 [https://github.com/mopidy/mopidy/issues/1464], PR: #1774 [https://github.com/mopidy/mopidy/issues/1774])

Extension support

	The following methods now return pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path] objects instead
of strings:

	mopidy.ext.Extension.get_cache_dir()

	mopidy.ext.Extension.get_config_dir()

	mopidy.ext.Extension.get_data_dir()

This makes it easier to support arbitrary encoding in file names.

	The command mopidy deps no longer repeats the dependencies of
Mopidy itself for every installed extension. This reduces the length of the
command’s output drastically. (PR: #1846 [https://github.com/mopidy/mopidy/issues/1846])

HTTP frontend

	Stop bundling Mopidy.js and serving it at /mopidy/mopidy.js and
/mopidy/mopidy.min.js. All Mopidy web clients must use Mopidy.js from npm
or vendor their own copy of the library.
(Fixes: #1083 [https://github.com/mopidy/mopidy/issues/1083], #1460 [https://github.com/mopidy/mopidy/issues/1460], PR: #1708 [https://github.com/mopidy/mopidy/issues/1708])

	Remove support for serving arbitrary files over HTTP through the use of
http/static_dir, which has been deprecated since 1.0. (Fixes:
#1463 [https://github.com/mopidy/mopidy/issues/1463], PR: #1706 [https://github.com/mopidy/mopidy/issues/1706])

	Add option http/default_app to redirect from web server root
to a specific app instead of Mopidy’s web app list. (PR: #1791 [https://github.com/mopidy/mopidy/issues/1791])

	Add cookie secret to Tornado web server, allowing Tornado request handlers to
call get_secure_cookie(), in an implementation of get_current_user().
(PR: #1801 [https://github.com/mopidy/mopidy/issues/1801])

MPD frontend

	The Mopidy-MPD frontend is no longer bundled with Mopidy, and has been moved
to its own Git repo [https://github.com/mopidy/mopidy-mpd] and
PyPI project [https://pypi.org/project/Mopidy-MPD].

Local backend

	The Mopidy-Local backend is no longer bundled with Mopidy, and has been moved
to its own Git repo [https://github.com/mopidy/mopidy-local] and
PyPI project [https://pypi.org/project/Mopidy-Local].
(Fixes: #1003 [https://github.com/mopidy/mopidy/issues/1003])

	Removed mopidy.exceptions.FindError, as it was only used by
Mopidy-Local. (PR: #1857 [https://github.com/mopidy/mopidy/issues/1857])

Audio

	Remove the method mopidy.audio.Audio.emit_end_of_stream(), which has
been deprecated since 1.0. (Fixes: #1465 [https://github.com/mopidy/mopidy/issues/1465], PR: #1705 [https://github.com/mopidy/mopidy/issues/1705])

	Add live_stream option to mopidy.audio.Audio.set_uri()
that disables buffering, which reduces latency before playback starts,
and discards data when paused. (PR: #1845 [https://github.com/mopidy/mopidy/issues/1845])

Internals

	Format code with Black. (PR: #1834 [https://github.com/mopidy/mopidy/issues/1834])

	Port test assertions from unittest methods to pytest assert
statements. (PR: #1838 [https://github.com/mopidy/mopidy/issues/1838])

	Switch all internal path handling to use pathlib [https://docs.python.org/3/library/pathlib.html#module-pathlib]. (Fixes:
#1744 [https://github.com/mopidy/mopidy/issues/1744], PR: #1814 [https://github.com/mopidy/mopidy/issues/1814])

	Remove mopidy.compat and all Python 2/3 compatibility code. (PR:
#1833 [https://github.com/mopidy/mopidy/issues/1833], #1835 [https://github.com/mopidy/mopidy/issues/1835])

	Replace requirements.txt and setup.py with declarative config in
setup.cfg. (PR: #1839 [https://github.com/mopidy/mopidy/issues/1839])

	Refreshed and updated all of our end user-oriented documentation.

History

These are the changelogs for historical releases of Mopidy.

For the latest releases, see Changelog.

	Changelog 2.x series

	Changelog 1.x series

	Changelog 0.x series

Changelog 2.x series

This is the changelog of Mopidy v2.0.0 through v2.3.1.

For the latest releases, see Changelog.

v2.3.1 (2019-10-15)

Bug fix release.

	Dependencies: Lower requirement for Tornado from >= 5, < 6 to >= 4.4, <
6. Our HTTP server implementation works with Tornado 4 as well, which is
the latest version that is packaged on Ubuntu 18.04 LTS.

v2.3.0 (2019-10-02)

Mopidy 2.3.0 is mostly a bug fix release. Because we’re requiring a new major
version of Tornado, we’re doing a minor version bump of Mopidy.

	Dependencies: Support and require Tornado >= 5, < 6, as that is the latest
version support Python 2.7 and currently the oldest version shipped by Debian
and Arch. (Fixes: #1798 [https://github.com/mopidy/mopidy/issues/1798], PR: #1796 [https://github.com/mopidy/mopidy/issues/1796])

	Fix PkgResourcesDeprecationWarning on startup when a recent release
of setuptools is installed. (Fixes: #1778 [https://github.com/mopidy/mopidy/issues/1778], PR: #1780 [https://github.com/mopidy/mopidy/issues/1780])

	Network: Close connection following an exception in the protocol handler.
(Fixes: #1762 [https://github.com/mopidy/mopidy/issues/1762], PR: #1765 [https://github.com/mopidy/mopidy/issues/1765])

	Network: Log client’s connection details instead of server’s. This fixed a
regression introduced as part of PR: #1629 [https://github.com/mopidy/mopidy/issues/1629]. (Fixes: #1788 [https://github.com/mopidy/mopidy/issues/1788],
PR: #1792 [https://github.com/mopidy/mopidy/issues/1792])

	Core: Trigger mopidy.core.CoreListener.stream_title_changed() event
on recieving a title audio tag that differs from the current track’s
mopidy.models.Track.name. (Fixes: #1746 [https://github.com/mopidy/mopidy/issues/1746], PR: #1751 [https://github.com/mopidy/mopidy/issues/1751])

	Stream: Support playlists containing relative URIs. (Fixes: #1785 [https://github.com/mopidy/mopidy/issues/1785],
PR: #1802 [https://github.com/mopidy/mopidy/issues/1802])

	Stream: Fix crash when unwrapping stream without MIME type. (Fixes:
#1760 [https://github.com/mopidy/mopidy/issues/1760], PR: #1800 [https://github.com/mopidy/mopidy/issues/1800])

	MPD: Add support for seeking to time positions with float point precision.
(Fixes: #1756 [https://github.com/mopidy/mopidy/issues/1756], PR: #1801 [https://github.com/mopidy/mopidy/issues/1801])

	MPD: Handle URIs containing non-ASCII characters. (Fixes: #1759 [https://github.com/mopidy/mopidy/issues/1759],
PR: #1805 [https://github.com/mopidy/mopidy/issues/1805], #1808 [https://github.com/mopidy/mopidy/issues/1808])

v2.2.3 (2019-06-20)

Bug fix release.

	Audio: Fix switching between tracks with different sample rates. (Fixes:
#1528 [https://github.com/mopidy/mopidy/issues/1528], PR: #1735 [https://github.com/mopidy/mopidy/issues/1735])

	Audio: Prevent buffering handling interfering with track changes. (Fixes:
#1722 [https://github.com/mopidy/mopidy/issues/1722], PR: #1740 [https://github.com/mopidy/mopidy/issues/1740])

	Local: Add .pdf and .zip to the default
local/excluded_file_extensions config value. (PR: #1737 [https://github.com/mopidy/mopidy/issues/1737])

	File: Synchronised the default file/excluded_file_extensions
config values with local/excluded_file_extensions. (PR:
#1743 [https://github.com/mopidy/mopidy/issues/1743])

	Stream: Fix error when playing stream from .pls playlist with quoted
URLs. (Fixes: #1770 [https://github.com/mopidy/mopidy/issues/1770], PR: #1771 [https://github.com/mopidy/mopidy/issues/1771])

	Docs: Resize and compress images, reducing the release tarball size from 3.5
to 1.1 MB.

	Docs: Fix broken links.

v2.2.2 (2018-12-29)

Bug fix release.

	HTTP: Fix hang on exit due to change in Tornado v5.0 IOLoop. (Fixes:
#1715 [https://github.com/mopidy/mopidy/issues/1715], PR: #1716 [https://github.com/mopidy/mopidy/issues/1716])

	Files: Fix crash due to mix of text and bytes in paths that come from
$XDG_CONFIG_HOME/user-dirs.dirs. (Fixes: #1676 [https://github.com/mopidy/mopidy/issues/1676], #1725 [https://github.com/mopidy/mopidy/issues/1725])

v2.2.1 (2018-10-15)

Bug fix release.

	HTTP: Stop blocking connections where the network location part of the
Origin header is empty, such as WebSocket connections originating from
local files. (Fixes: #1711 [https://github.com/mopidy/mopidy/issues/1711], PR: #1712 [https://github.com/mopidy/mopidy/issues/1712])

	HTTP: Add new config value http/csrf_protection which enables all
CSRF protections introduced in Mopidy 2.2.0. It is enabled by default and
should only be disabled by those users who are unable to set a
Content-Type: application/json request header or cannot utilise the
http/allowed_origins config value. (Fixes: #1713 [https://github.com/mopidy/mopidy/issues/1713], PR:
#1714 [https://github.com/mopidy/mopidy/issues/1714])

v2.2.0 (2018-09-30)

Mopidy 2.2.0, a feature release, is out. It is a quite small release, featuring
mostly minor fixes and improvements.

Most notably, this release introduces CSRF protection for both the HTTP and
WebSocket RPC interfaces, and improves the file path checking in the M3U
backend. The CSRF protection should stop attacks against local Mopidy servers
from malicious websites, like what was demonstrated by Josef Gajdusek in
#1659 [https://github.com/mopidy/mopidy/issues/1659].

Since the release of 2.1.0, we’ve closed approximately 21 issues and pull
requests through 133 commits by 22 authors.

	Dependencies: Drop support for Tornado < 4.4. Though strictly a breaking
change, this shouldn’t affect any supported systems as even Debian stable
includes Tornado >= 4.4.

	Core: Remove upper limit of 10000 tracks in tracklist. 10000 tracks is still
the default limit as some MPD clients crash if the tracklist is longer, but
it is now possible to set the core/max_tracklist_length config
value as high as you want to. (Fixes: #1600 [https://github.com/mopidy/mopidy/issues/1600], PR: #1666 [https://github.com/mopidy/mopidy/issues/1666])

	Core: Fix crash on library.lookup(uris=[]). (Fixes: #1619 [https://github.com/mopidy/mopidy/issues/1619], PR:
#1620 [https://github.com/mopidy/mopidy/issues/1620])

	Core: Define return value of playlists.delete() to be a bool,
True on success, False otherwise. (PR: #1702 [https://github.com/mopidy/mopidy/issues/1702])

	M3U: Ignore all attempts at accessing files outside the
m3u/playlist_dir. (Partly fixes: #1659 [https://github.com/mopidy/mopidy/issues/1659], PR: #1702 [https://github.com/mopidy/mopidy/issues/1702])

	File: Change default ordering to show directories first, then files. (PR:
#1595 [https://github.com/mopidy/mopidy/issues/1595])

	File: Fix extraneous encoding of path. (PR: #1611 [https://github.com/mopidy/mopidy/issues/1611])

	HTTP: Protect RPC and WebSocket interfaces against CSRF by blocking requests
that originate from servers other than those specified in the new config
value http/allowed_origins. An artifact of this is that all
JSON-RPC requests must now always set the header
Content-Type: application/json.
(Partly fixes: #1659 [https://github.com/mopidy/mopidy/issues/1659], PR: #1668 [https://github.com/mopidy/mopidy/issues/1668])

	MPD: Added idle to the list of available commands.
(Fixes: #1593 [https://github.com/mopidy/mopidy/issues/1593], PR: #1597 [https://github.com/mopidy/mopidy/issues/1597])

	MPD: Added Unix domain sockets for binding MPD to.
(Fixes: #1531 [https://github.com/mopidy/mopidy/issues/1531], PR: #1629 [https://github.com/mopidy/mopidy/issues/1629])

	MPD: Lookup track metadata for MPD load and listplaylistinfo.
(Fixes: #1511 [https://github.com/mopidy/mopidy/issues/1511], PR: #1621 [https://github.com/mopidy/mopidy/issues/1621])

	Ensure that decoding of OS errors with unknown encoding never crashes, but
instead replaces unknown bytes with a replacement marker. (Fixes:
#1599 [https://github.com/mopidy/mopidy/issues/1599])

	Set GLib program and application name, so that we show up as “Mopidy” in
PulseAudio instead of “python …”. (PR: #1626 [https://github.com/mopidy/mopidy/issues/1626])

v2.1.0 (2017-01-02)

Mopidy 2.1.0, a feature release, is finally out!

Since the release of 2.0.0, it has been quiet times in Mopidy circles. This is
mainly caused by core developers moving from the enterprise to startups or into
positions with more responsibility, and getting more kids. Of course, this has
greatly decreased the amount of spare time available for open source work. But
fear not, Mopidy is not dead. We’ve returned from year long periods with close
to no activity before, and will hopefully do so again.

Despite all, we’ve closed or merged approximately 18 issues and pull requests
through about 170 commits since the release of v2.0.1 back in August.

The major new feature in Mopidy 2.1 is support for restoring playback state and
the current playlist after a restart. This feature was contributed by Jens
Lütjen [https://github.com/dublok].

	Dependencies: Drop support for Tornado < 3.2. Though strictly a breaking
change, this shouldn’t have any effect on what systems we support, as Tornado
3.2 or newer is available from the distros that include GStreamer >= 1.2.3,
which we already require.

	Core: Mopidy restores its last state when started. Can be enabled by setting
the config value core/restore_state to true.

	Audio: Update scanner to handle sources such as RTSP. (Fixes: #1479 [https://github.com/mopidy/mopidy/issues/1479])

	Audio: The scanner set the date to mopidy.models.Track.date and
mopidy.models.Album.date
(Fixes: #1741 [https://github.com/mopidy/mopidy/issues/1741])

	File: Add new config value file/excluded_file_extensions.

	Local: Skip hidden directories directly in media_dir.
(Fixes: #1559 [https://github.com/mopidy/mopidy/issues/1559], PR: #1555 [https://github.com/mopidy/mopidy/issues/1555])

	MPD: Fix MPD protocol for replay_gain_status command. The actual command
remains unimplemented. (PR: #1520 [https://github.com/mopidy/mopidy/issues/1520])

	MPD: Add nextsong and nextsongid to the response of MPD status
command. (Fixes: #1133 [https://github.com/mopidy/mopidy/issues/1133], #1516 [https://github.com/mopidy/mopidy/issues/1516], PR: #1523 [https://github.com/mopidy/mopidy/issues/1523])

	MPD: Fix inconsistent playlist state after playlist is emptied with repeat
and consume mode turned on. (Fixes: #1512 [https://github.com/mopidy/mopidy/issues/1512], PR: #1549 [https://github.com/mopidy/mopidy/issues/1549])

	Audio: Improve handling of duration in scanning. VBR tracks should fail less
frequently and MMS works again. (Fixes: #1553 [https://github.com/mopidy/mopidy/issues/1553], PR #1575 [https://github.com/mopidy/mopidy/issues/1575],
#1576 [https://github.com/mopidy/mopidy/issues/1576], #1577 [https://github.com/mopidy/mopidy/issues/1577])

v2.0.1 (2016-08-16)

Bug fix release.

	Audio: Set soft-volume flag on GStreamer’s playbin element. This is the
playbin’s default, but we managed to override it when configuring the playbin
to only process audio. This should fix the “Volume/mute is not available”
warning.

	Audio: Fix buffer conversion. This fixes image extraction.
(Fixes: #1469 [https://github.com/mopidy/mopidy/issues/1469], PR: #1472 [https://github.com/mopidy/mopidy/issues/1472])

	Audio: Update scan logic to workaround GStreamer issue where tags and
duration might only be available after we start playing.
(Fixes: #935 [https://github.com/mopidy/mopidy/issues/935], #1453 [https://github.com/mopidy/mopidy/issues/1453], #1474 [https://github.com/mopidy/mopidy/issues/1474], #1480 [https://github.com/mopidy/mopidy/issues/1480], PR:
#1487 [https://github.com/mopidy/mopidy/issues/1487])

	Audio: Better handling of seek when position does not match the expected
pending position. (Fixes: #1462 [https://github.com/mopidy/mopidy/issues/1462], #1505 [https://github.com/mopidy/mopidy/issues/1505], PR: #1496 [https://github.com/mopidy/mopidy/issues/1496])

	Audio: Handle bad date tags from audio, thanks to Mario Lang and Tom Parker
who fixed this in parallel. (Fixes: #1506 [https://github.com/mopidy/mopidy/issues/1506], PR: #1525 [https://github.com/mopidy/mopidy/issues/1525],
#1517 [https://github.com/mopidy/mopidy/issues/1517])

	Audio: Make sure scanner handles streams without a duration.
(Fixes: #1526 [https://github.com/mopidy/mopidy/issues/1526])

	Audio: Ensure audio tags are never None. (Fixes: #1449 [https://github.com/mopidy/mopidy/issues/1449])

	Audio: Update mopidy.audio.Audio.set_metadata() to postpone sending
tags if there is a pending track change. (Fixes: #1357 [https://github.com/mopidy/mopidy/issues/1357], PR:
#1538 [https://github.com/mopidy/mopidy/issues/1538])

	Core: Avoid endless loop if all tracks in the tracklist are unplayable and
consume mode is off. (Fixes: #1221 [https://github.com/mopidy/mopidy/issues/1221], #1454 [https://github.com/mopidy/mopidy/issues/1454], PR: #1455 [https://github.com/mopidy/mopidy/issues/1455])

	Core: Correctly record the last position of a track when switching to another
one. Particularly relevant for Mopidy-Scrobbler users, as before it was
essentially unusable. (Fixes: #1456 [https://github.com/mopidy/mopidy/issues/1456], PR: #1534 [https://github.com/mopidy/mopidy/issues/1534])

	Models: Fix encoding error if Identifier
fields, like the musicbrainz_id model fields, contained non-ASCII Unicode
data. (Fixes: #1508 [https://github.com/mopidy/mopidy/issues/1508], PR: #1546 [https://github.com/mopidy/mopidy/issues/1546])

	File: Ensure path comparison is done between bytestrings only. Fixes crash
where a file/media_dirs path contained non-ASCII characters.
(Fixes: #1345 [https://github.com/mopidy/mopidy/issues/1345], PR: #1493 [https://github.com/mopidy/mopidy/issues/1493])

	Stream: Fix milliseconds vs seconds mistake in timeout handling.
(Fixes: #1521 [https://github.com/mopidy/mopidy/issues/1521], PR: #1522 [https://github.com/mopidy/mopidy/issues/1522])

	Docs: Fix the rendering of mopidy.core.Core and
mopidy.audio.Audio docs. This should also contribute towards making
the Mopidy Debian package build bit-by-bit reproducible. (Fixes:
#1500 [https://github.com/mopidy/mopidy/issues/1500])

v2.0.0 (2016-02-15)

Mopidy 2.0 is here!

Since the release of 1.1, we’ve closed or merged approximately 80 issues and
pull requests through about 350 commits by 14 extraordinary people, including
10 newcomers. That’s about the same amount of issues and commits as between 1.0
and 1.1. The number of contributors is a bit lower but we didn’t have a real
life sprint during this development cycle. Thanks to everyone
who has contributed!

With the release of Mopidy 1.0 we promised that any extension working with
Mopidy 1.0 should continue working with all Mopidy 1.x releases. Mopidy 2.0 is
quite a friendly major release and will only break a single extension that we
know of: Mopidy-Spotify. To ensure that everything continues working, please
upgrade to Mopidy 2.0 and Mopidy-Spotify 3.0 at the same time.

No deprecated functionality has been removed in Mopidy 2.0.

The major features of Mopidy 2.0 are:

	Gapless playback has been mostly implemented. It works as long as you don’t
change tracks in the middle of a track or use previous and next. In a future
release, previous and next will also become gapless. It is now quite easy to
have Mopidy streaming audio over the network using Icecast. See the updated
Icecast docs for details of how to set it up and workarounds for the
remaining issues.

	Mopidy has upgraded from GStreamer 0.10 to 1.x. This has been in our backlog
for more than three years. With this upgrade we’re ridding ourselves of
years of GStreamer bugs that have been fixed in newer releases, we can get
into Debian testing again, and we’ve removed the last major roadblock for
running Mopidy on Python 3.

Dependencies

	Mopidy now requires GStreamer >= 1.2.3, as we’ve finally ported from
GStreamer 0.10. Since we’re requiring a new major version of our major
dependency, we’re upping the major version of Mopidy too. (Fixes:
#225 [https://github.com/mopidy/mopidy/issues/225])

Core API

	Start tlid counting at 1 instead of 0 to keep in sync with MPD’s
songid.

	get_time_position() now returns the
seek target while a seek is in progress. This gives better results than just
failing the position query. (Fixes: #312 [https://github.com/mopidy/mopidy/issues/312] PR: #1346 [https://github.com/mopidy/mopidy/issues/1346])

	Add mopidy.core.PlaylistsController.get_uri_schemes(). (PR:
#1362 [https://github.com/mopidy/mopidy/issues/1362])

	The track_playback_ended event now includes the correct tl_track
reference when changing to the next track in consume mode. (Fixes:
#1402 [https://github.com/mopidy/mopidy/issues/1402] PR: #1403 [https://github.com/mopidy/mopidy/issues/1403] PR: #1406 [https://github.com/mopidy/mopidy/issues/1406])

Models

	Deprecated: mopidy.models.Album.images is deprecated. Use
mopidy.core.LibraryController.get_images() instead. (Fixes:
#1325 [https://github.com/mopidy/mopidy/issues/1325])

Extension support

	Log exception and continue if an extension crashes during setup. Previously,
we let Mopidy crash if an extension’s setup crashed. (PR: #1337 [https://github.com/mopidy/mopidy/issues/1337])

Local backend

	Made local/data_dir really deprecated. This change breaks older
versions of Mopidy-Local-SQLite and Mopidy-Local-Images.

M3U backend

	Add m3u/base_dir for resolving relative paths in M3U
files. (Fixes: #1428 [https://github.com/mopidy/mopidy/issues/1428], PR: #1442 [https://github.com/mopidy/mopidy/issues/1442])

	Derive track name from file name for non-extended M3U
playlists. (Fixes: #1364 [https://github.com/mopidy/mopidy/issues/1364], PR: #1369 [https://github.com/mopidy/mopidy/issues/1369])

	Major refactoring of the M3U playlist extension. (Fixes:
#1370 [https://github.com/mopidy/mopidy/issues/1370] PR: #1386 [https://github.com/mopidy/mopidy/issues/1386])

	Add m3u/default_encoding and m3u/default_extension
config values for improved text encoding support.

	No longer scan playlist directory and parse playlists at startup or
refresh. Similarly tothe file extension, this now happens on request.

	Use mopidy.models.Ref instances when reading and writing
playlists. Therefore, Track.length is no longer stored in
extended M3U playlists and #EXTINF runtime is always set to
-1.

	Improve reliability of playlist updates using the core playlist API by
applying the write-replace pattern for file updates.

Stream backend

	Make sure both lookup and playback correctly handle playlists and our
blacklist support. (Fixes: #1445 [https://github.com/mopidy/mopidy/issues/1445], PR: #1447 [https://github.com/mopidy/mopidy/issues/1447])

MPD frontend

	Implemented commands for modifying stored playlists:

	playlistadd

	playlistclear

	playlistdelete

	playlistmove

	rename

	rm

	save

(Fixes: #1014 [https://github.com/mopidy/mopidy/issues/1014], PR: #1187 [https://github.com/mopidy/mopidy/issues/1187], #1308 [https://github.com/mopidy/mopidy/issues/1308], #1322 [https://github.com/mopidy/mopidy/issues/1322])

	Start songid counting at 1 instead of 0 to match the original MPD server.

	Idle events are now emitted on seeked events. This fix means that
clients relying on idle events now get notified about seeks.
(Fixes: #1331 [https://github.com/mopidy/mopidy/issues/1331], PR: #1347 [https://github.com/mopidy/mopidy/issues/1347])

	Idle events are now emitted on playlists_loaded events. This fix means
that clients relying on idle events now get notified about playlist
loads.
(Fixes: #1331 [https://github.com/mopidy/mopidy/issues/1331], PR: #1347 [https://github.com/mopidy/mopidy/issues/1347])

	Event handler for playlist_deleted has been unbroken. This unreported bug
would cause the MPD frontend to crash preventing any further communication
via the MPD protocol. (PR: #1347 [https://github.com/mopidy/mopidy/issues/1347])

Zeroconf

	Require stype argument to mopidy.zeroconf.Zeroconf.

	Use Avahi’s interface selection by default. (Fixes: #1283 [https://github.com/mopidy/mopidy/issues/1283])

	Use Avahi server’s hostname instead of socket.getfqdn() in service
display name.

Cleanups

	Removed warning if ~/.mopidy exists. We stopped using this location
in 0.6, released in October 2011.

	Removed warning if ~/.config/mopidy/settings.py exists. We stopped
using this settings file in 0.14, released in April 2013.

	The on_event handler in our listener helper now catches exceptions. This
means that any errors in event handling won’t crash the actor in question.

	Catch errors when loading logging/config_file.
(Fixes: #1320 [https://github.com/mopidy/mopidy/issues/1320])

	Breaking: Removed unused internal
mopidy.internal.process.BaseThread. This breaks Mopidy-Spotify
1.4.0. Versions < 1.4.0 was already broken by Mopidy 1.1, while versions >=
2.0 doesn’t use this class.

Audio

	Breaking: The audio scanner now returns ISO-8601 formatted strings
instead of datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] objects for dates found in tags.
Because of this change, we can now return years without months or days, which
matches the semantics of the date fields in our data models.

	Breaking: mopidy.audio.Audio.set_appsrc()’s caps argument has
changed format due to the upgrade from GStreamer 0.10 to GStreamer 1. As
far as we know, this is only used by Mopidy-Spotify. As an example, with
GStreamer 0.10 the Mopidy-Spotify caps was:

audio/x-raw-int, endianness=(int)1234, channels=(int)2, width=(int)16,
depth=(int)16, signed=(boolean)true, rate=(int)44100

With GStreamer 1 this changes to:

audio/x-raw,format=S16LE,rate=44100,channels=2,layout=interleaved

If your Mopidy backend uses set_appsrc(), please refer to GStreamer
documentation for details on the new caps string format.

	Breaking: mopidy.audio.utils.create_buffer()’s capabilities
argument is no longer in use and has been removed. As far as we know, this
was only used by Mopidy-Spotify.

	Duplicate seek events getting to appsrc based backends is now fixed. This
should prevent seeking in Mopidy-Spotify from glitching. (Fixes:
#1404 [https://github.com/mopidy/mopidy/issues/1404])

	Workaround crash caused by a race that does not seem to affect functionality.
This should be fixed properly together with #1222 [https://github.com/mopidy/mopidy/issues/1222]. (Fixes:
#1430 [https://github.com/mopidy/mopidy/issues/1430], PR: #1438 [https://github.com/mopidy/mopidy/issues/1438])

	Add a new config option, audio/buffer_time, for setting the buffer
time of the GStreamer queue. If you experience buffering before track
changes, it may help to increase this. (Workaround for #1409 [https://github.com/mopidy/mopidy/issues/1409])

	tags_changed events are only emitted for fields that have changed.
Previous behavior was to emit this for all fields received from GStreamer.
(PR: #1439 [https://github.com/mopidy/mopidy/issues/1439])

Gapless

	Add partial support for gapless playback. Gapless now works as long as you
don’t change tracks or use next/previous. (PR: #1288 [https://github.com/mopidy/mopidy/issues/1288])

The Icecast docs has been updated with the workarounds still needed
to properly stream Mopidy audio through Icecast.

	Core playback has been refactored to better handle gapless, and async state
changes.

	Tests have been updated to always use a core actor so async state changes
don’t trip us up.

	Seek events are now triggered when the seek completes. Previously the event
was emitted when the seek was requested, not when it completed. Further
changes have been made to make seek work correctly for gapless related corner
cases. (Fixes: #1305 [https://github.com/mopidy/mopidy/issues/1305] PR: #1346 [https://github.com/mopidy/mopidy/issues/1346])

Changelog 1.x series

This is the changelog of Mopidy v1.0.0 through v1.1.2.

For the latest releases, see Changelog.

v1.1.2 (2016-01-18)

Bug fix release.

	Main: Catch errors when loading the logging/config_file file.
(Fixes: #1320 [https://github.com/mopidy/mopidy/issues/1320])

	Core: If changing to another track while the player is paused, the new track
would not be added to the history or marked as currently playing. (Fixes:
#1352 [https://github.com/mopidy/mopidy/issues/1352], PR: #1356 [https://github.com/mopidy/mopidy/issues/1356])

	Core: Skips over unplayable tracks if the user attempts to change tracks
while paused, like we already did if in playing state. (Fixes #1378 [https://github.com/mopidy/mopidy/issues/1378],
PR: #1379 [https://github.com/mopidy/mopidy/issues/1379])

	Core: Make lookup() ignore tracks with
empty URIs. (Partly fixes: #1340 [https://github.com/mopidy/mopidy/issues/1340], PR: #1381 [https://github.com/mopidy/mopidy/issues/1381])

	Core: Fix crash if backends emits events with wrong names or arguments.
(Fixes: #1383 [https://github.com/mopidy/mopidy/issues/1383])

	Stream: If an URI is considered playable, don’t consider it as a candidate
for playlist parsing. Just looking at MIME type prefixes isn’t enough, as for
example Ogg Vorbis has the MIME type application/ogg. (Fixes:
#1299 [https://github.com/mopidy/mopidy/issues/1299])

	Local: If the scan or clear commands are used on a library that does not
exist, exit with an error. (Fixes: #1298 [https://github.com/mopidy/mopidy/issues/1298])

	MPD: Notify idling clients when a seek is performed. (Fixes: #1331 [https://github.com/mopidy/mopidy/issues/1331])

	MPD: Don’t return tracks with empty URIs. (Partly fixes: #1340 [https://github.com/mopidy/mopidy/issues/1340], PR:
#1343 [https://github.com/mopidy/mopidy/issues/1343])

	MPD: Add volume command that was reintroduced, though still as a
deprecated command, in MPD 0.18 and is in use by some clients like mpc.
(Fixes: #1393 [https://github.com/mopidy/mopidy/issues/1393], PR: #1397 [https://github.com/mopidy/mopidy/issues/1397])

	Proxy: Handle case where proxy/port is either missing from config
or set to an empty string. (PR: #1371 [https://github.com/mopidy/mopidy/issues/1371])

v1.1.1 (2015-09-14)

Bug fix release.

	Dependencies: Specify that we need Requests >= 2.0, not just any version.
This ensures that we fail earlier if Mopidy is used with a too old Requests.

	Core: Make mopidy.core.LibraryController.refresh() work for all
backends with a library provider. Previously, it wrongly worked for all
backends with a playlists provider. (Fixes: #1257 [https://github.com/mopidy/mopidy/issues/1257])

	Core: Respect core/cache_dir and core/data_dir config
values added in 1.1.0 when creating the dirs Mopidy need to store data. This
should not change the behavior for desktop users running Mopidy. When running
Mopidy as a system service installed from a package which sets the core dir
configs properly (e.g. Debian and Arch packages), this fix avoids the
creation of a couple of directories that should not be used, typically
/var/lib/mopidy/.local and /var/lib/mopidy/.cache. (Fixes:
#1259 [https://github.com/mopidy/mopidy/issues/1259], PR: #1266 [https://github.com/mopidy/mopidy/issues/1266])

	Core: Fix error in get_eot_tlid()
docstring. (Fixes: #1269 [https://github.com/mopidy/mopidy/issues/1269])

	Audio: Add timeout parameter to scan().
(Part of: #1250 [https://github.com/mopidy/mopidy/issues/1250], PR: #1281 [https://github.com/mopidy/mopidy/issues/1281])

	Extension support: Make get_cache_dir(),
get_config_dir(), and
get_data_dir() class methods, so they can be used
without creating an instance of the Extension class.
(Fixes: #1275 [https://github.com/mopidy/mopidy/issues/1275])

	Local: Deprecate local/data_dir and respect
core/data_dir instead. This does not change the defaults for
desktop users, only system services installed from packages that properly set
core/data_dir, like the Debian and Arch packages. (Fixes:
#1259 [https://github.com/mopidy/mopidy/issues/1259], PR: #1266 [https://github.com/mopidy/mopidy/issues/1266])

	Local: Change default value of local/scan_flush_threshold from
1000 to 100 to shorten the time Mopidy-Local-SQLite blocks incoming requests
while scanning the local library.

	M3U: Changed default for the m3u/playlists_dir from
$XDG_DATA_DIR/mopidy/m3u to unset, which now means the extension’s data
dir. This does not change the defaults for desktop users, only system
services installed from packages that properly set core/data_dir,
like the Debian and Arch pakages. (Fixes: #1259 [https://github.com/mopidy/mopidy/issues/1259], PR: #1266 [https://github.com/mopidy/mopidy/issues/1266])

	Stream: Expand nested playlists to find the stream URI. This used to work,
but regressed in 1.1.0 with the extraction of stream playlist parsing from
GStreamer to being handled by the Mopidy-Stream backend. (Fixes:
#1250 [https://github.com/mopidy/mopidy/issues/1250], PR: #1281 [https://github.com/mopidy/mopidy/issues/1281])

	Stream: If “file” is present in the stream/protocols config value
and the Mopidy-File extension is enabled, we exited with an error because
two extensions claimed the same URI scheme. We now log a warning recommending
to remove “file” from the stream/protocols config, and then
proceed startup. (Fixes: #1248 [https://github.com/mopidy/mopidy/issues/1248], PR: #1254 [https://github.com/mopidy/mopidy/issues/1254])

	Stream: Fix bug in new playlist parser. A non-ASCII char in an urilist
comment would cause a crash while parsing due to comparison of a non-ASCII
bytestring with a Unicode string. (Fixes: #1265 [https://github.com/mopidy/mopidy/issues/1265])

	File: Adjust log levels when failing to expand $XDG_MUSIC_DIR into a real
path. This usually happens when running Mopidy as a system service, and thus
with a limited set of environment variables. (Fixes: #1249 [https://github.com/mopidy/mopidy/issues/1249], PR:
#1255 [https://github.com/mopidy/mopidy/issues/1255])

	File: When browsing files, we no longer scan the files to check if they’re
playable. This makes browsing of the file hierarchy instant for HTTP clients,
which do no scanning of the files’ metadata, and a bit faster for MPD
clients, which no longer scan the files twice. (Fixes: #1260 [https://github.com/mopidy/mopidy/issues/1260], PR:
#1261 [https://github.com/mopidy/mopidy/issues/1261])

	File: Allow looking up metadata about any file:// URI, just like we did
in Mopidy 1.0.x, where Mopidy-Stream handled file:// URIs. In Mopidy
1.1.0, Mopidy-File did not allow one to lookup files outside the directories
listed in file/media_dir. This broke Mopidy-Local-SQLite when the
local/media_dir directory was not within one of the
file/media_dirs directories. For browsing of files, we still limit
access to files inside the file/media_dir directories. For lookup,
you can now read metadata for any file you know the path of. (Fixes:
#1268 [https://github.com/mopidy/mopidy/issues/1268], PR: #1273 [https://github.com/mopidy/mopidy/issues/1273])

	Audio: Fix timeout handling in scanner. This regression caused timeouts to
expire before it should, causing scans to fail.

	Audio: Update scanner to emit MIME type instead of an error when missing a
plugin.

v1.1.0 (2015-08-09)

Mopidy 1.1 is here!

Since the release of 1.0, we’ve closed or merged approximately 65 issues and
pull requests through about 400 commits by a record high 20 extraordinary
people, including 14 newcomers. That’s less issues and commits than in the 1.0
release, but even more contributors, and a doubling of the number of newcomers.
Thanks to everyone who has contributed,
especially those that joined the sprint at EuroPython 2015 in Bilbao, Spain a
couple of weeks ago!

As we promised with the release of Mopidy 1.0, any extension working with
Mopidy 1.0 should continue working with all Mopidy 1.x releases. However, this
release brings a lot stronger enforcement of our documented APIs. If an
extension doesn’t use the APIs properly, it may no longer work. The advantage
of this change is that Mopidy is now more robust against errors in extensions,
and also provides vastly better error messages when extensions misbehave. This
should make it easier to create quality extensions.

The major features of Mopidy 1.1 are:

	Validation of the arguments to all core API methods, as well as all responses
from backends and all data model attributes.

	New bundled backend, Mopidy-File. It is similar to Mopidy-Local, but allows
you to browse and play music from local disk without running a scan to index
the music first. The drawback is that it doesn’t support searching.

	The Mopidy-MPD server should now be up to date with the 0.19 version of the
MPD protocol.

Dependencies

	Mopidy now requires Requests.

	Heads up: Porting from GStreamer 0.10 to 1.x and support for running Mopidy
with Python 3.4+ is not far off on our roadmap.

Core API

	Deprecated: Calling the following methods with kwargs is being
deprecated. (PR: #1090 [https://github.com/mopidy/mopidy/issues/1090])

	mopidy.core.LibraryController.search()

	mopidy.core.PlaylistsController.filter()

	mopidy.core.TracklistController.filter()

	mopidy.core.TracklistController.remove()

	Updated core controllers to handle backend exceptions in all calls that rely
on multiple backends. (Issue: #667 [https://github.com/mopidy/mopidy/issues/667])

	Update core methods to do strict input checking. (Fixes: #700 [https://github.com/mopidy/mopidy/issues/700])

	Add tlid alternatives to methods that take tl_track and also add
get_{eot,next,previous}_tlid methods as light weight alternatives to the
tl_track versions of the calls. (Fixes: #1131 [https://github.com/mopidy/mopidy/issues/1131], PR: #1136 [https://github.com/mopidy/mopidy/issues/1136],
#1140 [https://github.com/mopidy/mopidy/issues/1140])

	Add mopidy.core.PlaybackController.get_current_tlid().
(Part of: #1137 [https://github.com/mopidy/mopidy/issues/1137])

	Update core to handle backend crashes and bad data. (Fixes: #1161 [https://github.com/mopidy/mopidy/issues/1161])

	Add core/max_tracklist_length config and limitation. (Fixes:
#997 [https://github.com/mopidy/mopidy/issues/997] PR: #1225 [https://github.com/mopidy/mopidy/issues/1225])

	Added playlist_deleted event. (Fixes: #996 [https://github.com/mopidy/mopidy/issues/996])

Models

	Added type checks and other sanity checks to model construction and
serialization. (Fixes: #865 [https://github.com/mopidy/mopidy/issues/865])

	Memory usage for models has been greatly improved. We now have a lower
overhead per instance by using slots, interned identifiers and automatically
reuse instances. For the test data set this was developed against, a library
of ~14.000 tracks, went from needing ~75MB to ~17MB. (Fixes: #348 [https://github.com/mopidy/mopidy/issues/348])

	Added mopidy.models.Artist.sortname field that is mapped to
musicbrainz-sortname tag. (Fixes: #940 [https://github.com/mopidy/mopidy/issues/940])

Configuration

	Add new configurations to set base directories to be used by Mopidy and
Mopidy extensions: core/cache_dir, core/config_dir, and
core/data_dir. (Fixes: #843 [https://github.com/mopidy/mopidy/issues/843], PR: #1232 [https://github.com/mopidy/mopidy/issues/1232])

Extension support

	Add new methods to Extension class for getting cache,
config and data directories specific to your extension:

	mopidy.ext.Extension.get_cache_dir()

	mopidy.ext.Extension.get_config_dir()

	mopidy.ext.Extension.get_data_dir()

Extensions should use these methods so that the correct directories are used
both when Mopidy is run by a regular user and when run as a system service.
(Fixes: #843 [https://github.com/mopidy/mopidy/issues/843], PR: #1232 [https://github.com/mopidy/mopidy/issues/1232])

	Add mopidy.httpclient.format_proxy() and
mopidy.httpclient.format_user_agent(). (Part of: #1156 [https://github.com/mopidy/mopidy/issues/1156])

	It is now possible to import mopidy.backends without having GObject or
GStreamer installed. In other words, a lot of backend extensions should now
be able to run tests in a virtualenv with global site-packages disabled. This
removes a lot of potential error sources. (Fixes: #1068 [https://github.com/mopidy/mopidy/issues/1068], PR:
#1115 [https://github.com/mopidy/mopidy/issues/1115])

Local backend

	Filter out None from
get_distinct() results. All returned
results should be strings. (Fixes: #1202 [https://github.com/mopidy/mopidy/issues/1202])

Stream backend

	Move stream playlist parsing from GStreamer to the stream backend. (Fixes:
#671 [https://github.com/mopidy/mopidy/issues/671])

File backend

The Mopidy-File backend is a new bundled backend. It is
similar to Mopidy-Local since it works with local files, but it differs in a
few key ways:

	Mopidy-File lets you browse your media files by their file hierarchy.

	It supports multiple media directories, all exposed under the “Files”
directory when you browse your library with e.g. an MPD client.

	There is no index of the media files, like the JSON or SQLite files used by
Mopidy-Local. Thus no need to scan the music collection before starting
Mopidy. Everything is read from the file system when needed and changes to
the file system is thus immediately visible in Mopidy clients.

	Because there is no index, there is no support for search.

Our long term plan is to keep this very simple file backend in Mopidy, as it
has a well defined and limited scope, while splitting the more feature rich
Mopidy-Local extension out to an independent project. (Fixes: #1004 [https://github.com/mopidy/mopidy/issues/1004],
PR: #1207 [https://github.com/mopidy/mopidy/issues/1207])

M3U backend

	Support loading UTF-8 encoded M3U files with the .m3u8 file extension.
(PR: #1193 [https://github.com/mopidy/mopidy/issues/1193])

MPD frontend

	The MPD command count now ignores tracks with no length, which would
previously cause a TypeError [https://docs.python.org/3/library/exceptions.html#TypeError]. (PR: #1192 [https://github.com/mopidy/mopidy/issues/1192])

	Concatenate multiple artists, composers and performers using the “A;B” format
instead of “A, B”. This is a part of updating our protocol implementation to
match MPD 0.19. (PR: #1213 [https://github.com/mopidy/mopidy/issues/1213])

	Add “not implemented” skeletons of new commands in the MPD protocol version
0.19:

	Current playlist:

	rangeid

	addtagid

	cleartagid

	Mounts and neighbors:

	mount

	unmount

	listmounts

	listneighbors

	Music DB:

	listfiles

	Track data now include the Last-Modified field if set on the track model.
(Fixes: #1218 [https://github.com/mopidy/mopidy/issues/1218], PR: #1219 [https://github.com/mopidy/mopidy/issues/1219])

	Implement tagtypes MPD command. (PR: #1235 [https://github.com/mopidy/mopidy/issues/1235])

	Exclude empty tags fields from metadata output. (Fixes: #1045 [https://github.com/mopidy/mopidy/issues/1045], PR:
#1235 [https://github.com/mopidy/mopidy/issues/1235])

	Implement protocol extensions to output Album URIs and Album Images when
outputting track data to clients. (PR: #1230 [https://github.com/mopidy/mopidy/issues/1230])

	The MPD commands lsinfo and listplaylists are now implemented using
the as_list() method, which retrieves
a lot less data and is thus much faster than the deprecated
get_playlists(). The drawback is that
the Last-Modified timestamp is not available through this method, and the
timestamps in the MPD command responses are now always set to the current
time.

Internal changes

	Tests have been cleaned up to stop using deprecated APIs where feasible.
(Partial fix: #1083 [https://github.com/mopidy/mopidy/issues/1083], PR: #1090 [https://github.com/mopidy/mopidy/issues/1090])

v1.0.8 (2015-07-22)

Bug fix release.

	Fix reversal of Title and Name in MPD protocol (Fixes: #1212 [https://github.com/mopidy/mopidy/issues/1212]
PR: #1214 [https://github.com/mopidy/mopidy/issues/1214])

	Fix crash if an M3U file in the m3u/playlist_dir directory has a
file name not decodable with the current file system encoding. (Fixes:
#1209 [https://github.com/mopidy/mopidy/issues/1209])

v1.0.7 (2015-06-26)

Bug fix release.

	Fix error in the MPD command list title The error was introduced in
v1.0.6.

v1.0.6 (2015-06-25)

Bug fix release.

	Core/MPD/Local: Add support for title in
mopidy.core.LibraryController.get_distinct(). (Fixes: #1181 [https://github.com/mopidy/mopidy/issues/1181],
PR: #1183 [https://github.com/mopidy/mopidy/issues/1183])

	Core: Make sure track changes make it to audio while paused.
(Fixes: #1177 [https://github.com/mopidy/mopidy/issues/1177], PR: #1185 [https://github.com/mopidy/mopidy/issues/1185])

v1.0.5 (2015-05-19)

Bug fix release.

	Core: Add workaround for playlist providers that do not support
creating playlists. (Fixes: #1162 [https://github.com/mopidy/mopidy/issues/1162], PR #1165 [https://github.com/mopidy/mopidy/issues/1165])

	M3U: Fix encoding error when saving playlists with non-ASCII track
titles. (Fixes: #1175 [https://github.com/mopidy/mopidy/issues/1175], PR #1176 [https://github.com/mopidy/mopidy/issues/1176])

v1.0.4 (2015-04-30)

Bug fix release.

	Audio: Since all previous attempts at tweaking the queuing for #1097 [https://github.com/mopidy/mopidy/issues/1097]
seems to break things in subtle ways for different users. We are giving up
on tweaking the defaults and just going to live with a bit more lag on
software volume changes. (Fixes: #1147 [https://github.com/mopidy/mopidy/issues/1147])

v1.0.3 (2015-04-28)

Bug fix release.

	HTTP: Another follow-up to the Tornado <3.0 fixing. Since the tests aren’t
run for Tornado 2.3 we didn’t catch that our previous fix wasn’t sufficient.
(Fixes: #1153 [https://github.com/mopidy/mopidy/issues/1153], PR: #1154 [https://github.com/mopidy/mopidy/issues/1154])

	Audio: Follow-up fix for #1097 [https://github.com/mopidy/mopidy/issues/1097] still exhibits issues for certain
setups. We are giving this get an other go by setting the buffer size to
maximum 100ms instead of a fixed number of buffers. (Addresses:
#1147 [https://github.com/mopidy/mopidy/issues/1147], PR: #1154 [https://github.com/mopidy/mopidy/issues/1154])

v1.0.2 (2015-04-27)

Bug fix release.

	HTTP: Make event broadcasts work with Tornado 2.3 again. The threading fix
in v1.0.1 broke this.

	Audio: Fix for #1097 [https://github.com/mopidy/mopidy/issues/1097] tuned down the buffer size in the queue. Turns
out this can cause distortions in certain cases. Give this an other go with
a more generous buffer size. (Addresses: #1147 [https://github.com/mopidy/mopidy/issues/1147], PR: #1152 [https://github.com/mopidy/mopidy/issues/1152])

	Audio: Make sure mute events get emitted by software mixer.
(Fixes: #1146 [https://github.com/mopidy/mopidy/issues/1146], PR: #1152 [https://github.com/mopidy/mopidy/issues/1152])

v1.0.1 (2015-04-23)

Bug fix release.

	Core: Make the new history controller available for use. (Fixes: mopidy.js#6 [https://github.com/mopidy/mopidy.js/issues/6])

	Audio: Software volume control has been reworked to greatly reduce the delay
between changing the volume and the change taking effect. (Fixes:
#1097 [https://github.com/mopidy/mopidy/issues/1097], PR: #1101 [https://github.com/mopidy/mopidy/issues/1101])

	Audio: As a side effect of the previous bug fix, software volume is no longer
tied to the PulseAudio application volume when using pulsesink. This
behavior was confusing for many users and doesn’t work well with the plans
for multiple outputs.

	Audio: Update scanner to decode all media it finds. This should fix cases
where the scanner hangs on non-audio files like video. The scanner will now
also let us know if we found any decodeable audio. (Fixes: #726 [https://github.com/mopidy/mopidy/issues/726], PR:
issue:1124)

	HTTP: Fix threading bug that would cause duplicate delivery of WS messages.
(PR: #1127 [https://github.com/mopidy/mopidy/issues/1127])

	MPD: Fix case where a playlist that is present in both browse and as a listed
playlist breaks the MPD frontend protocol output. (Fixes #1120 [https://github.com/mopidy/mopidy/issues/1120], PR:
#1142 [https://github.com/mopidy/mopidy/issues/1142])

v1.0.0 (2015-03-25)

Three months after our fifth anniversary, Mopidy 1.0 is finally here!

Since the release of 0.19, we’ve closed or merged approximately 140 issues and
pull requests through more than 600 commits by a record high 19 extraordinary
people, including seven newcomers. Thanks to everyone who has
contributed!

For the longest time, the focus of Mopidy 1.0 was to be another incremental
improvement, to be numbered 0.20. The result is still very much an incremental
improvement, with lots of small and larger improvements across Mopidy’s
functionality.

The major features of Mopidy 1.0 are:

	Semantic Versioning. We promise to not break APIs before
Mopidy 2.0. A Mopidy extension working with Mopidy 1.0 should continue to
work with all Mopidy 1.x releases.

	Preparation work to ease migration to a cleaned up and leaner core API in
Mopidy 2.0, and to give us some of the benefits of the cleaned up core API
right away.

	Preparation work to enable gapless playback in an upcoming 1.x release.

Dependencies

Since the previous release there are no changes to Mopidy’s dependencies.
However, porting from GStreamer 0.10 to 1.x and support for running Mopidy with
Python 3.4+ is not far off on our roadmap.

Core API

In the API used by all frontends and web extensions there is lots of methods
and arguments that are now deprecated in preparation for the next major
release. With the exception of some internals that leaked out in the playback
controller, no core APIs have been removed in this release. In other words,
most clients should continue to work unchanged when upgrading to Mopidy 1.0.
Though, it is strongly encouraged to review any use of the deprecated parts of
the API as those parts will be removed in Mopidy 2.0.

	Deprecated: Deprecate all Python properties in the core API. The
previously undocumented getter and setter methods are now the official API.
This aligns the Python API with the WebSocket/JavaScript API. Python
frontends needs to be updated. WebSocket/JavaScript API users are not
affected. (Fixes: #952 [https://github.com/mopidy/mopidy/issues/952])

	Add mopidy.core.HistoryController which keeps track of what tracks
have been played. (Fixes: #423 [https://github.com/mopidy/mopidy/issues/423], #1056 [https://github.com/mopidy/mopidy/issues/1056], PR: #803 [https://github.com/mopidy/mopidy/issues/803],
#1063 [https://github.com/mopidy/mopidy/issues/1063])

	Add mopidy.core.MixerController which keeps track of volume and
mute. (Fixes: #962 [https://github.com/mopidy/mopidy/issues/962])

Core library controller

	Deprecated: mopidy.core.LibraryController.find_exact(). Use
mopidy.core.LibraryController.search() with the exact keyword
argument set to True.

	Deprecated: The uri argument to
mopidy.core.LibraryController.lookup(). Use new uris keyword
argument instead.

	Add exact keyword argument to
mopidy.core.LibraryController.search().

	Add uris keyword argument to mopidy.core.LibraryController.lookup()
which allows for simpler lookup of multiple URIs. (Fixes: #1008 [https://github.com/mopidy/mopidy/issues/1008], PR:
#1047 [https://github.com/mopidy/mopidy/issues/1047])

	Updated mopidy.core.LibraryController.search() and
mopidy.core.LibraryController.find_exact() to normalize and warn about
malformed queries from clients. (Fixes: #1067 [https://github.com/mopidy/mopidy/issues/1067], PR: #1073 [https://github.com/mopidy/mopidy/issues/1073])

	Add mopidy.core.LibraryController.get_distinct() for getting unique
values for a given field. (Fixes: #913 [https://github.com/mopidy/mopidy/issues/913], PR: #1022 [https://github.com/mopidy/mopidy/issues/1022])

	Add mopidy.core.LibraryController.get_images() for looking up images
for any URI that is known to the backends. (Fixes #973 [https://github.com/mopidy/mopidy/issues/973], PR:
#981 [https://github.com/mopidy/mopidy/issues/981], #992 [https://github.com/mopidy/mopidy/issues/992] and #1013 [https://github.com/mopidy/mopidy/issues/1013])

Core playlist controller

	Deprecated: mopidy.core.PlaylistsController.get_playlists(). Use
as_list() and
get_items() instead. (Fixes:
#1057 [https://github.com/mopidy/mopidy/issues/1057], PR: #1075 [https://github.com/mopidy/mopidy/issues/1075])

	Deprecated: mopidy.core.PlaylistsController.filter(). Use
as_list() and filter yourself.

	Add mopidy.core.PlaylistsController.as_list(). (Fixes: #1057 [https://github.com/mopidy/mopidy/issues/1057],
PR: #1075 [https://github.com/mopidy/mopidy/issues/1075])

	Add mopidy.core.PlaylistsController.get_items(). (Fixes: #1057 [https://github.com/mopidy/mopidy/issues/1057],
PR: #1075 [https://github.com/mopidy/mopidy/issues/1075])

Core tracklist controller

	Removed: The following methods were documented as internal. They are now
fully private and unavailable outside the core actor. (Fixes: #1058 [https://github.com/mopidy/mopidy/issues/1058],
PR: #1062 [https://github.com/mopidy/mopidy/issues/1062])

	mopidy.core.TracklistController.mark_played()

	mopidy.core.TracklistController.mark_playing()

	mopidy.core.TracklistController.mark_unplayable()

	Add uris argument to mopidy.core.TracklistController.add() which
allows for simpler addition of multiple URIs to the tracklist. (Fixes:
#1060 [https://github.com/mopidy/mopidy/issues/1060], PR: #1065 [https://github.com/mopidy/mopidy/issues/1065])

Core playback controller

	Removed: Remove several internal parts that were leaking into the public
API and was never intended to be used externally. (Fixes: #1070 [https://github.com/mopidy/mopidy/issues/1070], PR:
#1076 [https://github.com/mopidy/mopidy/issues/1076])

	mopidy.core.PlaybackController.change_track() is now internal.

	Removed on_error_step keyword argument from
mopidy.core.PlaybackController.play()

	Removed clear_current_track keyword argument to
mopidy.core.PlaybackController.stop().

	Made the following event triggers internal:

	mopidy.core.PlaybackController.on_end_of_track()

	mopidy.core.PlaybackController.on_stream_changed()

	mopidy.core.PlaybackController.on_tracklist_changed()

	mopidy.core.PlaybackController.set_current_tl_track() is now
internal.

	Deprecated: The old methods on mopidy.core.PlaybackController
for volume and mute management have been deprecated. Use
mopidy.core.MixerController instead. (Fixes: #962 [https://github.com/mopidy/mopidy/issues/962])

	When seeking while paused, we no longer change to playing. (Fixes:
#939 [https://github.com/mopidy/mopidy/issues/939], PR: #1018 [https://github.com/mopidy/mopidy/issues/1018])

	Changed mopidy.core.PlaybackController.play() to take the return value
from mopidy.backend.PlaybackProvider.change_track() into account when
determining the success of the play()
call. (PR: #1071 [https://github.com/mopidy/mopidy/issues/1071])

	Add mopidy.core.Listener.stream_title_changed() and
mopidy.core.PlaybackController.get_stream_title() for letting clients
know about the current title in streams. (PR: #938 [https://github.com/mopidy/mopidy/issues/938], #1030 [https://github.com/mopidy/mopidy/issues/1030])

Backend API

In the API implemented by all backends there have been way fewer but somewhat
more drastic changes with some methods removed and new ones being required for
certain functionality to continue working. Most backends were already updated
to be compatible with Mopidy 1.0 before the release. New versions of the
backends will be released shortly after Mopidy itself.

Backend library providers

	Removed: Remove mopidy.backend.LibraryProvider.find_exact().

	Add an exact keyword argument to
mopidy.backend.LibraryProvider.search() to replace the old
find_exact() method.

Backend playlist providers

	Removed: Remove default implementation of
mopidy.backend.PlaylistsProvider.playlists. This is potentially
backwards incompatible. (PR: #1046 [https://github.com/mopidy/mopidy/issues/1046])

	Changed the API for mopidy.backend.PlaylistsProvider. Note that this
change is not backwards compatible. These changes are important to reduce
the Mopidy startup time. (Fixes: #1057 [https://github.com/mopidy/mopidy/issues/1057], PR: #1075 [https://github.com/mopidy/mopidy/issues/1075])

	Add mopidy.backend.PlaylistsProvider.as_list().

	Add mopidy.backend.PlaylistsProvider.get_items().

	Remove mopidy.backend.PlaylistsProvider.playlists property.

Backend playback providers

	Changed the API for mopidy.backend.PlaybackProvider. Note that this
change is not backwards compatible for certain backends. These changes
are crucial to adding gapless in one of the upcoming releases.
(Fixes: #1052 [https://github.com/mopidy/mopidy/issues/1052], PR: #1064 [https://github.com/mopidy/mopidy/issues/1064])

	mopidy.backend.PlaybackProvider.translate_uri() has been added. It is
strongly recommended that all backends migrate to using this API for
translating “Mopidy URIs” to real ones for playback.

	The semantics and signature of mopidy.backend.PlaybackProvider.play()
has changed. The method is now only used to set the playback state to
playing, and no longer takes a track.

Backends must migrate to
mopidy.backend.PlaybackProvider.translate_uri() or
mopidy.backend.PlaybackProvider.change_track() to continue working.

	mopidy.backend.PlaybackProvider.prepare_change() has been added.

Models

	Add mopidy.models.Image model to be returned by
mopidy.core.LibraryController.get_images(). (Part of #973 [https://github.com/mopidy/mopidy/issues/973])

	Change the semantics of mopidy.models.Track.last_modified to be
milliseconds instead of seconds since Unix epoch, or a simple counter,
depending on the source of the track. This makes it match the semantics of
mopidy.models.Playlist.last_modified. (Fixes: #678 [https://github.com/mopidy/mopidy/issues/678], PR:
#1036 [https://github.com/mopidy/mopidy/issues/1036])

Commands

	Make the mopidy command print a friendly error message if the
gobject Python module cannot be imported. (Fixes: #836 [https://github.com/mopidy/mopidy/issues/836])

	Add support for repeating the -v argument four times
to set the log level for all loggers to the lowest possible value, including
log records at levels lower than DEBUG too.

	Add path to the current mopidy executable to the output of mopidy
deps. This make it easier to see that a user is using pip-installed Mopidy
instead of APT-installed Mopidy without asking for which mopidy output.

Configuration

	Add support for the log level value all to the loglevels configurations.
This can be used to show absolutely all log records, including those at
custom levels below DEBUG.

	Add debug logging of unknown sections. (Fixes: #694 [https://github.com/mopidy/mopidy/issues/694], PR:
#1002 [https://github.com/mopidy/mopidy/issues/1002])

Logging

	Add custom log level TRACE (numerical level 5), which can be used by
Mopidy and extensions to log at an even more detailed level than DEBUG.

	Add support for per logger color overrides. (Fixes: #808 [https://github.com/mopidy/mopidy/issues/808], PR:
#1005 [https://github.com/mopidy/mopidy/issues/1005])

Local backend

	Improve error logging for scanner. (Fixes: #856 [https://github.com/mopidy/mopidy/issues/856], PR: #874 [https://github.com/mopidy/mopidy/issues/874])

	Add symlink support with loop protection to file finder. (Fixes:
#858 [https://github.com/mopidy/mopidy/issues/858], PR: #874 [https://github.com/mopidy/mopidy/issues/874])

	Add --force option for mopidy local scan for forcing a full rescan of
the library. (Fixes: #910 [https://github.com/mopidy/mopidy/issues/910], PR: #1010 [https://github.com/mopidy/mopidy/issues/1010])

	Stop ignoring offset and limit in searches when using the default
JSON backed local library. (Fixes: #917 [https://github.com/mopidy/mopidy/issues/917], PR: #949 [https://github.com/mopidy/mopidy/issues/949])

	Removed double triggering of playlists_loaded event.
(Fixes: #998 [https://github.com/mopidy/mopidy/issues/998], PR: #999 [https://github.com/mopidy/mopidy/issues/999])

	Cleanup and refactoring of local playlist code. Preserves playlist names
better and fixes bug in deletion of playlists. (Fixes: #937 [https://github.com/mopidy/mopidy/issues/937],
PR: #995 [https://github.com/mopidy/mopidy/issues/995] and rebased into #1000 [https://github.com/mopidy/mopidy/issues/1000])

	Sort local playlists by name. (Fixes: #1026 [https://github.com/mopidy/mopidy/issues/1026], PR: #1028 [https://github.com/mopidy/mopidy/issues/1028])

	Moved playlist support out to a new extension, Mopidy-M3U.

	Deprecated: The config value local/playlists_dir is no longer in
use and can be removed from your config.

Local library API

	Implementors of mopidy.local.Library.lookup() should now return a list
of Track instead of a single track, just like the
other lookup() methods in Mopidy. For now, returning a single track will
continue to work. (PR: #840 [https://github.com/mopidy/mopidy/issues/840])

	Add support for giving local libraries direct access to tags and duration.
(Fixes: #967 [https://github.com/mopidy/mopidy/issues/967])

	Add mopidy.local.Library.get_images() for looking up images
for local URIs. (Fixes: #1031 [https://github.com/mopidy/mopidy/issues/1031], PR: #1032 [https://github.com/mopidy/mopidy/issues/1032] and #1037 [https://github.com/mopidy/mopidy/issues/1037])

Stream backend

	Add support for HTTP proxies when doing initial metadata lookup for a stream.
(Fixes #390 [https://github.com/mopidy/mopidy/issues/390], PR: #982 [https://github.com/mopidy/mopidy/issues/982])

	Add basic tests for the stream library provider.

M3U backend

	Mopidy-M3U is a new bundled backend. It provides the same M3U support as was
previously part of the local backend.
(Fixes: #1054 [https://github.com/mopidy/mopidy/issues/1054], PR: #1066 [https://github.com/mopidy/mopidy/issues/1066])

	In playlist names, replace “/”, which are illegal in M3U file names,
with “|”. (PR: #1084 [https://github.com/mopidy/mopidy/issues/1084])

MPD frontend

	Add support for blacklisting MPD commands. This is used to prevent clients
from using listall and listallinfo which recursively lookup the
entire “database”. If you insist on using a client that needs these commands
change mpd/command_blacklist.

	Start setting the Name field with the stream title when listening to
radio streams. (Fixes: #944 [https://github.com/mopidy/mopidy/issues/944], PR: #1030 [https://github.com/mopidy/mopidy/issues/1030])

	Enable browsing of artist references, in addition to albums and playlists.
(PR: #884 [https://github.com/mopidy/mopidy/issues/884])

	Switch the list command over to using the new method
mopidy.core.LibraryController.get_distinct() for increased performance.
(Fixes: #913 [https://github.com/mopidy/mopidy/issues/913])

	In stored playlist names, replace “/”, which are illegal, with “|” instead of
a whitespace. Pipes are more similar to forward slash.

	Share a single mapping between names and URIs across all MPD sessions.
(Fixes: #934 [https://github.com/mopidy/mopidy/issues/934], PR: #968 [https://github.com/mopidy/mopidy/issues/968])

	Add support for toggleoutput command. (PR: #1015 [https://github.com/mopidy/mopidy/issues/1015])

	The mixrampdb and mixrampdelay commands are now known to Mopidy, but
are not implemented. (PR: #1015 [https://github.com/mopidy/mopidy/issues/1015])

	Fix crash on socket error when using a locale causing the exception’s error
message to contain characters not in ASCII. (Fixes: issue:971, PR:
#1044 [https://github.com/mopidy/mopidy/issues/1044])

HTTP frontend

	Deprecated: Deprecated the http/static_dir config. Please make
your web clients pip-installable Mopidy extensions to make it easier to
install for end users.

	Prevent a race condition in WebSocket event broadcasting from crashing the
web server. (PR: #1020 [https://github.com/mopidy/mopidy/issues/1020])

Mixers

	Add support for disabling volume control in Mopidy entirely by setting the
configuration audio/mixer to none. (Fixes: #936 [https://github.com/mopidy/mopidy/issues/936], PR:
#1015 [https://github.com/mopidy/mopidy/issues/1015], #1035 [https://github.com/mopidy/mopidy/issues/1035])

Audio

	Removed: Support for visualizers and the audio/visualizer
config value. The feature was originally added as a workaround for all the
people asking for ncmpcpp visualizer support, and since we could get it
almost for free thanks to GStreamer. But, this feature did never make sense
for a server such as Mopidy.

	Deprecated: Deprecated mopidy.audio.Audio.emit_end_of_stream().
Pass a None buffer to mopidy.audio.Audio.emit_data() to end
the stream. This should only affect Mopidy-Spotify.

	Add mopidy.audio.AudioListener.tags_changed(). Notifies core when new
tags are found.

	Add mopidy.audio.Audio.get_current_tags() for looking up the current
tags of the playing media.

	Internal code cleanup within audio subsystem:

	Started splitting audio code into smaller better defined pieces.

	Improved GStreamer related debug logging.

	Provide better error messages for missing plugins.

	Add foundation for trying to re-add multiple output support.

	Add internal helper for converting GStreamer data types to Python.

	Reduce scope of audio scanner to just find tags and duration. Modification
time, URI and minimum length handling are now outside of this class.

	Update scanner to operate with milliseconds for duration.

	Update scanner to use a custom source, typefind and decodebin. This allows
us to detect playlists before we try to decode them.

	Refactored scanner to create a new pipeline per track, this is needed as
reseting decodebin is much slower than tearing it down and making a fresh
one.

	Move and rename helper for converting tags to tracks.

	Ignore albums without a name when converting tags to tracks.

	Support UTF-8 in M3U playlists. (Fixes: #853 [https://github.com/mopidy/mopidy/issues/853])

	Add workaround for volume not persisting across tracks on OS X.
(Issue: #886 [https://github.com/mopidy/mopidy/issues/886], PR: #958 [https://github.com/mopidy/mopidy/issues/958])

	Improved missing plugin error reporting in scanner. (PR: #1033 [https://github.com/mopidy/mopidy/issues/1033])

	Introduced a new return type for the scanner, a named tuple with uri,
tags, duration, seekable and mime. (PR: #1033 [https://github.com/mopidy/mopidy/issues/1033])

	Added support for checking if the media is seekable, and getting the initial
MIME type guess. (PR: #1033 [https://github.com/mopidy/mopidy/issues/1033])

Mopidy.js client library

This version has been released to npm as Mopidy.js v0.5.0.

	Reexport When.js library as Mopidy.when, to make it easily available to
users of Mopidy.js. (Fixes: mopidy.js#1 [https://github.com/mopidy/mopidy.js/issues/1])

	Default to wss:// as the WebSocket protocol if the page is hosted on
https://. This has no effect if the webSocketUrl setting is
specified. (Pull request: mopidy.js#2 [https://github.com/mopidy/mopidy.js/issues/2])

	Upgrade dependencies.

Development

	Add new contribution guidelines.

	Add new development guide.

	Speed up event emitting.

	Changed test runner from nose to py.test. (PR: #1024 [https://github.com/mopidy/mopidy/issues/1024])

Changelog 0.x series

This is the changelog of Mopidy v0.1.0a0 through v0.19.5.

For the latest releases, see Changelog.

v0.19.5 (2014-12-23)

Today is Mopidy’s five year anniversary. We’re celebrating with a bugfix
release and are looking forward to the next five years!

	Config: Support UTF-8 in extension’s default config. If an extension with
non-ASCII characters in its default config was installed, and Mopidy didn’t
already have a config file, Mopidy would crashed when trying to create the
initial config file based on the default config of all available extensions.
(Fixes: discourse.mopidy.com/t/428 [https://discourse.mopidy.com/t/428])

	Extensions: Fix crash when unpacking data from
pkg_resources.VersionConflict created with a single argument. (Fixes:
#911 [https://github.com/mopidy/mopidy/issues/911])

	Models: Hide empty collections from repr() [https://docs.python.org/3/library/functions.html#repr] representations.

	Models: Field values are no longer stored on the model instance when the
value matches the default value for the field. This makes two models equal
when they have a field which in one case is implicitly set to the default
value and in the other case explicitly set to the default value, but with
otherwise equal fields. (Fixes: #837 [https://github.com/mopidy/mopidy/issues/837])

	Models: Changed the default value of mopidy.models.Album.num_tracks,
mopidy.models.Track.track_no, and
mopidy.models.Track.last_modified from 0 to None.

	Core: When skipping to the next track in consume mode, remove the skipped
track from the tracklist. This is consistent with the original MPD server’s
behavior. (Fixes: #902 [https://github.com/mopidy/mopidy/issues/902])

	Local: Fix scanning of modified files. (PR: #904 [https://github.com/mopidy/mopidy/issues/904])

	MPD: Re-enable browsing of empty directories. (PR: #906 [https://github.com/mopidy/mopidy/issues/906])

	MPD: Remove track comments from responses. They are not included by the
original MPD server, and this works around #881 [https://github.com/mopidy/mopidy/issues/881]. (PR: #882 [https://github.com/mopidy/mopidy/issues/882])

	HTTP: Errors while starting HTTP apps are logged instead of crashing the HTTP
server. (Fixes: #875 [https://github.com/mopidy/mopidy/issues/875])

v0.19.4 (2014-09-01)

Bug fix release.

	Configuration: mopidy --config now supports directories.

	Logging: Fix that some loggers would be disabled if
logging/config_file was set. (Fixes: #740 [https://github.com/mopidy/mopidy/issues/740])

	Quit process with exit code 1 when stopping because of a backend, frontend,
or mixer initialization error.

	Backend API: Update mopidy.backend.LibraryProvider.browse() signature
and docs to match how the core use the backend’s browse method. (Fixes:
#833 [https://github.com/mopidy/mopidy/issues/833])

	Local library API: Add mopidy.local.Library.ROOT_DIRECTORY_URI
constant for use by implementors of mopidy.local.Library.browse().
(Related to: #833 [https://github.com/mopidy/mopidy/issues/833])

	HTTP frontend: Guard against double close of WebSocket, which causes an
AttributeError [https://docs.python.org/3/library/exceptions.html#AttributeError] on Tornado < 3.2.

	MPD frontend: Make the list command return albums when sending 3
arguments. This was incorrectly returning artists after the MPD command
changes in 0.19.0. (Fixes: #817 [https://github.com/mopidy/mopidy/issues/817])

	MPD frontend: Fix a race condition where two threads could try to free the
same data simultaneously. (Fixes: #781 [https://github.com/mopidy/mopidy/issues/781])

v0.19.3 (2014-08-03)

Bug fix release.

	Audio: Fix negative track length for radio streams. (Fixes: #662 [https://github.com/mopidy/mopidy/issues/662],
PR: #796 [https://github.com/mopidy/mopidy/issues/796])

	Audio: Tell GStreamer to not pick Jack sink. (Fixes: #604 [https://github.com/mopidy/mopidy/issues/604])

	Zeroconf: Fix discovery by adding .local to the announced hostname. (PR:
#795 [https://github.com/mopidy/mopidy/issues/795])

	Zeroconf: Fix intermittent DBus/Avahi exception.

	Extensions: Fail early if trying to setup an extension which doesn’t
implement the mopidy.ext.Extension.setup() method. (Fixes:
#813 [https://github.com/mopidy/mopidy/issues/813])

v0.19.2 (2014-07-26)

Bug fix release, directly from the Mopidy development sprint at EuroPython 2014
in Berlin.

	Audio: Make audio/mixer_volume work on the software mixer again.
This was broken with the mixer changes in 0.19.0. (Fixes: #791 [https://github.com/mopidy/mopidy/issues/791])

	HTTP frontend: When using Tornado 4.0, allow WebSocket requests from other
hosts. (Fixes: #788 [https://github.com/mopidy/mopidy/issues/788])

	MPD frontend: Fix crash when MPD commands are called with the wrong number of
arguments. This was broken with the MPD command changes in 0.19.0. (Fixes:
#789 [https://github.com/mopidy/mopidy/issues/789])

v0.19.1 (2014-07-23)

Bug fix release.

	Dependencies: Mopidy now requires Tornado >= 2.3, instead of >= 3.1. This
should make Mopidy continue to work on Debian/Raspbian stable, where Tornado
2.3 is the newest version available.

	HTTP frontend: Add missing string interpolation placeholder.

	Development: mopidy --version and mopidy.core.Core.get_version()
now returns the correct version when Mopidy is run from a Git repo other than
Mopidy’s own. (Related to #706 [https://github.com/mopidy/mopidy/issues/706])

v0.19.0 (2014-07-21)

The focus of 0.19 have been on improving the MPD implementation, replacing
GStreamer mixers with our own mixer API, and on making web clients installable
with pip, like any other Mopidy extension.

Since the release of 0.18, we’ve closed or merged 53 issues and pull requests
through about 445 commits by 12 people, including five new
guys. Thanks to everyone that has contributed!

Dependencies

	Mopidy now requires Tornado >= 3.1.

	Mopidy no longer requires CherryPy or ws4py. Previously, these were optional
dependencies required for the HTTP frontend to work.

Backend API

	Breaking change: Imports of the backend API from
mopidy.backends no longer works. The new API introuced in v0.18 is now
required. Most extensions already use the new API location.

Commands

	The mopidy-convert-config tool for migrating the setings.py
configuration file used by Mopidy up until 0.14 to the new config file format
has been removed after over a year of trusty service. If you still need to
convert your old settings.py configuration file, do so using and older
release, like Mopidy 0.18, or migrate the configuration to the new format by
hand.

Configuration

	Add optional=True support to mopidy.config.Boolean.

Logging

	Fix proper decoding of exception messages that depends on the user’s locale.

	Colorize logs depending on log level. This can be turned off with the new
logging/color configuration. (Fixes: #772 [https://github.com/mopidy/mopidy/issues/772])

Extension support

	Breaking change: Removed the Extension methods that
were deprecated in 0.18: get_backend_classes(),
get_frontend_classes(), and
register_gstreamer_elements(). Use
mopidy.ext.Extension.setup() instead, as most extensions already do.

Audio

	Breaking change: Removed support for GStreamer mixers. GStreamer 1.x does
not support volume control, so we changed to use software mixing by default
in v0.17.0. Now, we’re removing support for all other GStreamer mixers and
are reintroducing mixers as something extensions can provide independently of
GStreamer. (Fixes: #665 [https://github.com/mopidy/mopidy/issues/665], PR: #760 [https://github.com/mopidy/mopidy/issues/760])

	Breaking change: Changed the audio/mixer config value to refer
to Mopidy mixer extensions instead of GStreamer mixers. The default value,
software, still has the same behavior. All other values will either no
longer work or will at the very least require you to install an additional
extension.

	Changed the audio/mixer_volume config value behavior from
affecting GStreamer mixers to affecting Mopidy mixer extensions instead. The
end result should be the same without any changes to this config value.

	Deprecated the audio/mixer_track config value. This config value
is no longer in use. Mixer extensions that need additional configuration
handle this themselves.

	Use Proxy section when streaming media from the Internet. (Partly
fixing #390 [https://github.com/mopidy/mopidy/issues/390])

	Fix proper decoding of exception messages that depends on the user’s locale.

	Fix recognition of ASX and XSPF playlists with tags in all caps or with
carriage return line endings. (Fixes: #687 [https://github.com/mopidy/mopidy/issues/687])

	Support simpler ASX playlist variant with <ENTRY> elements without
children.

	Added target_state attribute to the audio layer’s
state_changed() event. Currently, it is
None except when we’re paused because of buffering. Then the new
field exposes our target state after buffering has completed.

Mixers

	Added new mopidy.mixer.Mixer API which can be implemented by
extensions.

	Created a bundled extension, Mopidy-SoftwareMixer, for controlling volume
in software in GStreamer’s pipeline. This is Mopidy’s default mixer. To use
this mixer, set the audio/mixer config value to software.

	Created an external extension, Mopidy-ALSAMixer [https://github.com/mopidy/mopidy-alsamixer/], for controlling volume with
hardware through ALSA. To use this mixer, install the extension, and set the
audio/mixer config value to alsamixer.

HTTP frontend

	CherryPy and ws4py have been replaced with Tornado. This will hopefully
reduce CPU usage on OS X (#445 [https://github.com/mopidy/mopidy/issues/445]) and improve error handling in corner
cases, like when returning from suspend (#718 [https://github.com/mopidy/mopidy/issues/718]).

	Added support for packaging web clients as Mopidy extensions and installing
them using pip. See the HTTP server side API for details. (Fixes:
#440 [https://github.com/mopidy/mopidy/issues/440])

	Added web page at /mopidy/ which lists all web clients installed as
Mopidy extensions. (Fixes: #440 [https://github.com/mopidy/mopidy/issues/440])

	Added support for extending the HTTP frontend with additional server side
functionality. See HTTP server side API for details.

	Exposed the core API using HTTP POST requests with JSON-RPC payloads at
/mopidy/rpc. This is the same JSON-RPC interface as is exposed over the
WebSocket at /mopidy/ws, so you can run any core API command.

The HTTP POST interfaces does not give you access to events from Mopidy, like
the WebSocket does. The WebSocket interface is still recommended for web
clients. The HTTP POST interface may be easier to use for simpler programs,
that just needs to query the currently playing track or similar. See
HTTP POST API for details.

	If Zeroconf is enabled, we now announce the _mopidy-http._tcp service in
addition to _http._tcp. This is to make it easier to automatically find
Mopidy’s HTTP server among other Zeroconf-published HTTP servers on the
local network.

Mopidy.js client library

This version has been released to npm as Mopidy.js v0.4.0.

	Update Mopidy.js to use when.js 3. If you maintain a Mopidy client, you
should review the differences between when.js 2 and 3 [https://github.com/cujojs/when/blob/master/docs/api.md#upgrading-to-30-from-2x]
and the when.js debugging guide [https://github.com/cujojs/when/blob/master/docs/api.md#debugging-promises].

	All of Mopidy.js’ promise rejection values are now of the Error type. This
ensures that all JavaScript VMs will show a useful stack trace if a rejected
promise’s value is used to throw an exception. To allow catch clauses to
handle different errors differently, server side errors are of the type
Mopidy.ServerError, and connection related errors are of the type
Mopidy.ConnectionError.

	Add support for method calls with by-name arguments. The old calling
convention, by-position-only, is still the default, but this will
change in the future. A warning is logged to the console if you don’t
explicitly select a calling convention. See the Mopidy.js JavaScript library docs for
details.

MPD frontend

	Proper command tokenization for MPD requests. This replaces the old regex
based system with an MPD protocol specific tokenizer responsible for breaking
requests into pieces before the handlers have at them.
(Fixes: #591 [https://github.com/mopidy/mopidy/issues/591] and #592 [https://github.com/mopidy/mopidy/issues/592])

	Updated command handler system. As part of the tokenizer cleanup we’ve
updated how commands are registered and making it simpler to create new
handlers.

	Simplified a bunch of handlers. All the “browse” type commands now use a
common browse helper under the hood for less repetition. Likewise the query
handling of “search” commands has been somewhat simplified.

	Adds placeholders for missing MPD commands, preparing the way for bumping the
protocol version once they have been added.

	Respond to all pending requests before closing connection. (PR: #722 [https://github.com/mopidy/mopidy/issues/722])

	Stop incorrectly catching LookupError in command handling.
(Fixes: #741 [https://github.com/mopidy/mopidy/issues/741])

	Browse support for playlists and albums has been added. (PR: #749 [https://github.com/mopidy/mopidy/issues/749],
#754 [https://github.com/mopidy/mopidy/issues/754])

	The lsinfo command now returns browse results before local playlists.
This is helpful as not all clients sort the returned items. (PR:
#755 [https://github.com/mopidy/mopidy/issues/755])

	Browse now supports different entries with identical names. (PR:
#762 [https://github.com/mopidy/mopidy/issues/762])

	Search terms that are empty or consists of only whitespace are no longer
included in the search query sent to backends. (PR: #758 [https://github.com/mopidy/mopidy/issues/758])

Local backend

	The JSON local library backend now logs a friendly message telling you about
mopidy local scan if you don’t have a local library cache. (Fixes:
#711 [https://github.com/mopidy/mopidy/issues/711])

	The local scan command now use multiple threads to walk the file system
and check files’ modification time. This speeds up scanning, escpecially
when scanning remote file systems over e.g. NFS.

	the local scan command now creates necessary folders if they don’t
already exist. Previously, this was only done by the Mopidy server, so doing
a local scan before running the server the first time resulted in a
crash. (Fixes: #703 [https://github.com/mopidy/mopidy/issues/703])

	Fix proper decoding of exception messages that depends on the user’s locale.

Stream backend

	Add config value stream/metadata_blacklist to blacklist certain
URIs we should not open to read metadata from before they are opened for
playback. This is typically needed for services that invalidate URIs after a
single use. (Fixes: #660 [https://github.com/mopidy/mopidy/issues/660])

v0.18.3 (2014-02-16)

Bug fix release.

	Fix documentation build.

v0.18.2 (2014-02-16)

Bug fix release.

	We now log warnings for wrongly configured extensions, and clearly label them
in mopidy config, but does no longer stop Mopidy from starting because of
misconfigured extensions. (Fixes: #682 [https://github.com/mopidy/mopidy/issues/682])

	Fix a crash in the server side WebSocket handler caused by connection
problems with clients. (Fixes: #428 [https://github.com/mopidy/mopidy/issues/428], #571 [https://github.com/mopidy/mopidy/issues/571])

	Fix the time_position field of the track_playback_ended event, which
has been always 0 since v0.18.0. This made scrobbles by Mopidy-Scrobbler not
be persisted by Last.fm, because Mopidy reported that you listened to 0
seconds of each track. (Fixes: #674 [https://github.com/mopidy/mopidy/issues/674])

	Fix the log setup so that it is possible to increase the amount of logging
from a specific logger using the loglevels config section. (Fixes:
#684 [https://github.com/mopidy/mopidy/issues/684])

	Serialization of Playlist models with the
last_modified field set to a datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance did not
work. The type of mopidy.models.Playlist.last_modified has been
redefined from a datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] instance to the number of
milliseconds since Unix epoch as an integer. This makes serialization of the
time stamp simpler.

	Minor refactor of the MPD server context so that Mopidy’s MPD protocol
implementation can easier be reused. (Fixes: #646 [https://github.com/mopidy/mopidy/issues/646])

	Network and signal handling has been updated to play nice on Windows systems.

v0.18.1 (2014-01-23)

Bug fix release.

	Disable extension instead of crashing if a dependency has the wrong
version. (Fixes: #657 [https://github.com/mopidy/mopidy/issues/657])

	Make logging work to both console, debug log file, and any custom logging
setup from logging/config_file at the same time. (Fixes:
#661 [https://github.com/mopidy/mopidy/issues/661])

v0.18.0 (2014-01-19)

The focus of 0.18 have been on two fronts: the local library and browsing.

First, the local library’s old tag cache file used for storing the track
metadata scanned from your music collection has been replaced with a far
simpler implementation using JSON as the storage format. At the same time, the
local library have been made replaceable by extensions, so you can now create
extensions that use your favorite database to store the metadata.

Second, we’ve finally implemented the long awaited “file system” browsing
feature that you know from MPD. It is supported by both the MPD frontend and
the local and Spotify backends. It is also used by the new Mopidy-Dirble
extension to provide you with a directory of Internet radio stations from all
over the world.

Since the release of 0.17, we’ve closed or merged 49 issues and pull requests
through about 285 commits by 11 people, including six new
guys. Thanks to everyone that has contributed!

Core API

	Add mopidy.core.Core.version() for HTTP clients to manage compatibility
between API versions. (Fixes: #597 [https://github.com/mopidy/mopidy/issues/597])

	Add mopidy.models.Ref class for use as a lightweight reference to
other model types, containing just an URI, a name, and an object type. It is
barely used for now, but its use will be extended over time.

	Add mopidy.core.LibraryController.browse() method for browsing a
virtual file system of tracks. Backends can implement support for this by
implementing mopidy.backend.LibraryProvider.browse().

	Events emitted on play/stop, pause/resume, next/previous and on end of track
has been cleaned up to work consistently. See the message of
commit 1d108752f6 [https://github.com/mopidy/mopidy/commit/1d108752f6] for the full details. (Fixes: #629 [https://github.com/mopidy/mopidy/issues/629])

Backend API

	Move the backend API classes from mopidy.backends.base to
mopidy.backend and remove the Base prefix from the class names:

	From mopidy.backends.base.Backend
to mopidy.backend.Backend

	From mopidy.backends.base.BaseLibraryProvider
to mopidy.backend.LibraryProvider

	From mopidy.backends.base.BasePlaybackProvider
to mopidy.backend.PlaybackProvider

	From mopidy.backends.base.BasePlaylistsProvider
to mopidy.backend.PlaylistsProvider

	From mopidy.backends.listener.BackendListener
to mopidy.backend.BackendListener

Imports from the old locations still works, but are deprecated.

	Add mopidy.backend.LibraryProvider.browse(), which can be implemented
by backends that wants to expose directories of tracks in Mopidy’s virtual
file system.

Frontend API

	The dummy backend used for testing many frontends have moved from
mopidy.backends.dummy to mopidy.backend.dummy.
(PR: #984 [https://github.com/mopidy/mopidy/issues/984])

Commands

	Reduce amount of logging from dependencies when using mopidy -v.
(Fixes: #593 [https://github.com/mopidy/mopidy/issues/593])

	Add support for additional logging verbosity levels with mopidy -vv and
mopidy -vvv which increases the amount of logging from dependencies.
(Fixes: #593 [https://github.com/mopidy/mopidy/issues/593])

Configuration

	The default for the mopidy --config option has been updated to
include $XDG_CONFIG_DIRS in addition to $XDG_CONFIG_DIR. (Fixes
#431 [https://github.com/mopidy/mopidy/issues/431])

	Added support for deprecating config values in order to allow for graceful
removal of the no longer used config value local/tag_cache_file.

Extension support

	Switched to using a registry model for classes provided by extension. This
allows extensions to be extended by other extensions, as needed by for
example pluggable libraries for the local backend. See
mopidy.ext.Registry for details. (Fixes #601 [https://github.com/mopidy/mopidy/issues/601])

	Added the new method mopidy.ext.Extension.setup(). This method
replaces the now deprecated
get_backend_classes(),
get_frontend_classes(), and
register_gstreamer_elements().

Audio

	Added audio/mixer_volume to set the initial volume of mixers.
This is especially useful for setting the software mixer volume to something
else than the default 100%. (Fixes: #633 [https://github.com/mopidy/mopidy/issues/633])

Local backend

Note

After upgrading to Mopidy 0.18 you must run mopidy local scan to
reindex your local music collection. This is due to the change of storage
format.

	Added support for browsing local directories in Mopidy’s virtual file system.

	Finished the work on creating pluggable libraries. Users can now
reconfigure Mopidy to use alternate library providers of their choosing for
local files. (Fixes issue #44 [https://github.com/mopidy/mopidy/issues/44], partially resolves #397 [https://github.com/mopidy/mopidy/issues/397], and
causes a temporary regression of #527 [https://github.com/mopidy/mopidy/issues/527].)

	Switched default local library provider from a “tag cache” file that closely
resembled the one used by the original MPD server to a compressed JSON file.
This greatly simplifies our library code and reuses our existing model
serialization code, as used by the HTTP API and web clients.

	Removed our outdated and bug-ridden “tag cache” local library implementation.

	Added the config value local/library to select which library to
use. It defaults to json, which is the only local library bundled with
Mopidy.

	Added the config value local/data_dir to have a common config for
where to store local library data. This is intended to avoid every single
local library provider having to have it’s own config value for this.

	Added the config value local/scan_flush_threshold to control how
often to tell local libraries to store changes when scanning local music.

Streaming backend

	Add live lookup of URI metadata. (Fixes #540 [https://github.com/mopidy/mopidy/issues/540])

	Add support for extended M3U playlist, meaning that basic track metadata
stored in playlists will be used by Mopidy.

HTTP frontend

	Upgrade Mopidy.js dependencies and add support for using Mopidy.js with
Browserify. This version has been released to npm as Mopidy.js v0.2.0.
(Fixes: #609 [https://github.com/mopidy/mopidy/issues/609])

MPD frontend

	Make the lsinfo, listall, and listallinfo commands support
browsing of Mopidy’s virtual file system. (Fixes: #145 [https://github.com/mopidy/mopidy/issues/145])

	Empty commands now return a ACK [5@0] {} No command given error instead
of OK. This is consistent with the original MPD server implementation.

Internal changes

	Events from the audio actor, backends, and core actor are now emitted
asynchronously through the GObject event loop. This should resolve the issue
that has blocked the merge of the EOT-vs-EOS fix for a long time.

v0.17.0 (2013-11-23)

The focus of 0.17 has been on introducing subcommands to the mopidy
command, making it possible for extensions to add subcommands of their own, and
to improve the default config file when starting Mopidy the first time. In
addition, we’ve grown support for Zeroconf publishing of the MPD and HTTP
servers, and gotten a much faster scanner. The scanner now also scans some
additional tags like composers and performers.

Since the release of 0.16, we’ve closed or merged 22 issues and pull requests
through about 200 commits by five people, including one new
contributor.

Commands

	Switched to subcommands for the mopidy command , this implies the
following changes: (Fixes: #437 [https://github.com/mopidy/mopidy/issues/437])

	Old command

	New command

	mopidy –show-deps

	mopidy deps

	mopidy –show-config

	mopidy config

	mopidy-scan

	mopidy local scan

	Added hooks for extensions to create their own custom subcommands and
converted mopidy-scan as a first user of the new API. (Fixes:
#436 [https://github.com/mopidy/mopidy/issues/436])

Configuration

	When mopidy is started for the first time we create an empty
$XDG_CONFIG_DIR/mopidy/mopidy.conf file. We now populate this file
with the default config for all installed extensions so it’ll be easier to
set up Mopidy without looking through all the documentation for relevant
config values. (Fixes: #467 [https://github.com/mopidy/mopidy/issues/467])

Core API

	The Track model has grown fields for composers,
performers, genre, and comment.

	The search field track has been renamed to track_name to avoid
confusion with track_no. (Fixes: #535 [https://github.com/mopidy/mopidy/issues/535])

	The signature of the tracklist’s
filter() and
remove() methods have changed.
Previously, they expected e.g. tracklist.filter(tlid=17). Now, the value
must always be a list, e.g. tracklist.filter(tlid=[17]). This change
allows you to get or remove multiple tracks with a single call, e.g.
tracklist.remove(tlid=[1, 2, 7]). This is especially useful for web
clients, as requests can be batched. This also brings the interface closer to
the library’s find_exact() and
search() methods.

Audio

	Change default volume mixer from autoaudiomixer to software.
GStreamer 1.x does not support volume control, so we’re changing to use
software mixing by default, as that may be the only thing we’ll support in
the future when we upgrade to GStreamer 1.x.

Local backend

	Library scanning has been switched back from GStreamer’s discoverer to our
custom implementation due to various issues with GStreamer 0.10’s built in
scanner. This also fixes the scanner slowdown. (Fixes: #565 [https://github.com/mopidy/mopidy/issues/565])

	When scanning, we no longer default the album artist to be the same as the
track artist. Album artist is now only populated if the scanned file got an
explicit album artist set.

	The scanner will now extract multiple artists from files with multiple artist
tags.

	The scanner will now extract composers and performers, as well as genre,
bitrate, and comments. (Fixes: #577 [https://github.com/mopidy/mopidy/issues/577])

	Fix scanner so that time of last modification is respected when deciding
which files can be skipped when scanning the music collection for changes.

	The scanner now ignores the capitalization of file extensions in
local/excluded_file_extensions, so you no longer need to list both
.jpg and .JPG to ignore JPEG files when scanning. (Fixes:
#525 [https://github.com/mopidy/mopidy/issues/525])

	The scanner now by default ignores *.nfo and *.html files too.

MPD frontend

	The MPD service is now published as a Zeroconf service if avahi-daemon is
running on the system. Some MPD clients will use this to present Mopidy as an
available server on the local network without needing any configuration. See
the mpd/zeroconf config value to change the service name or
disable the service. (Fixes: #39 [https://github.com/mopidy/mopidy/issues/39])

	Add support for composer, performer, comment, genre, and
performer. These tags can be used with list ..., search ..., and
find ... and their variants, and are supported in the any tag also

	The bitrate field in the status response is now always an integer.
This follows the behavior of the original MPD server. (Fixes: #577 [https://github.com/mopidy/mopidy/issues/577])

HTTP frontend

	The HTTP service is now published as a Zeroconf service if avahi-daemon is
running on the system. Some browsers will present HTTP Zeroconf services on
the local network as “local sites” bookmarks. See the
http/zeroconf config value to change the service name or disable
the service. (Fixes: #39 [https://github.com/mopidy/mopidy/issues/39])

DBUS/MPRIS

	The mopidy process now registers it’s GObject event loop as the default
eventloop for dbus-python. (Fixes: mopidy-mpris#2 [https://github.com/mopidy/mopidy-mpris/issues/2])

v0.16.1 (2013-11-02)

This is very small release to get Mopidy’s Debian package ready for inclusion
in Debian.

Commands

	Fix removal of last dir level in paths to dependencies in
mopidy --show-deps output.

	Add manpages for all commands.

Local backend

	Fix search filtering by track number that was added in 0.16.0.

MPD frontend

	Add support for list "albumartist" ... which was missed when find and
search learned to handle albumartist in 0.16.0. (Fixes: #553 [https://github.com/mopidy/mopidy/issues/553])

v0.16.0 (2013-10-27)

The goals for 0.16 were to add support for queuing playlists of e.g. radio
streams directly to Mopidy, without manually extracting the stream URLs from
the playlist first, and to move the Spotify, Last.fm, and MPRIS support out to
independent Mopidy extensions, living outside the main Mopidy repo. In
addition, we’ve seen some cleanup to the playback vs tracklist part of the core
API, which will require some changes for users of the HTTP/JavaScript APIs, as
well as the addition of audio muting to the core API. To speed up the
development of new extensions, we’ve added a cookiecutter
project to get the skeleton of a Mopidy extension up and running in a matter of
minutes. Read below for all the details and for links to issues with even more
details.

Since the release of 0.15, we’ve closed or merged 31 issues and pull requests
through about 200 commits by five people, including three new
contributors.

Dependencies

Parts of Mopidy have been moved to their own external extensions. If you want
Mopidy to continue to work like it used to, you may have to install one or more
of the following extensions as well:

	The Spotify backend has been moved to
Mopidy-Spotify [https://github.com/mopidy/mopidy-spotify].

	The Last.fm scrobbler has been moved to
Mopidy-Scrobbler [https://github.com/mopidy/mopidy-scrobbler].

	The MPRIS frontend has been moved to
Mopidy-MPRIS [https://github.com/mopidy/mopidy-mpris].

Core

	Parts of the functionality in mopidy.core.PlaybackController have
been moved to mopidy.core.TracklistController:

	Old location

	New location

	playback.get_consume()

	tracklist.get_consume()

	playback.set_consume(v)

	tracklist.set_consume(v)

	playback.consume

	tracklist.consume

	playback.get_random()

	tracklist.get_random()

	playback.set_random(v)

	tracklist.set_random(v)

	playback.random

	tracklist.random

	playback.get_repeat()

	tracklist.get_repeat()

	playback.set_repeat(v)

	tracklist.set_repeat(v)

	playback.repeat

	tracklist.repeat

	playback.get_single()

	tracklist.get_single()

	playback.set_single(v)

	tracklist.set_single(v)

	playback.single

	tracklist.single

	playback.get_tracklist_position()

	tracklist.index(tl_track)

	playback.tracklist_position

	tracklist.index(tl_track)

	playback.get_tl_track_at_eot()

	tracklist.eot_track(tl_track)

	playback.tl_track_at_eot

	tracklist.eot_track(tl_track)

	playback.get_tl_track_at_next()

	tracklist.next_track(tl_track)

	playback.tl_track_at_next

	tracklist.next_track(tl_track)

	playback.get_tl_track_at_previous()

	tracklist.previous_track(tl_track)

	playback.tl_track_at_previous

	tracklist.previous_track(tl_track)

The tl_track argument to the last four new functions are used as the
reference tl_track in the tracklist to find e.g. the next track. Usually,
this will be current_tl_track.

	Added mopidy.core.PlaybackController.mute for muting and unmuting
audio. (Fixes: #186 [https://github.com/mopidy/mopidy/issues/186])

	Added mopidy.core.CoreListener.mute_changed() event that is triggered
when the mute state changes.

	In “random” mode, after a full playthrough of the tracklist, playback
continued from the last track played to the end of the playlist in non-random
order. It now stops when all tracks have been played once, unless “repeat”
mode is enabled. (Fixes: #453 [https://github.com/mopidy/mopidy/issues/453])

	In “single” mode, after a track ended, playback continued with the next track
in the tracklist. It now stops after playing a single track, unless “repeat”
mode is enabled. (Fixes: #496 [https://github.com/mopidy/mopidy/issues/496])

Audio

	Added support for parsing and playback of playlists in GStreamer. For end
users this basically means that you can now add a radio playlist to Mopidy
and we will automatically download it and play the stream inside it.
Currently we support M3U, PLS, XSPF and ASX files. Also note that we can
currently only play the first stream in the playlist.

	We now handle the rare case where an audio track has max volume equal to min.
This was causing divide by zero errors when scaling volumes to a zero to
hundred scale. (Fixes: #525 [https://github.com/mopidy/mopidy/issues/525])

	Added support for muting audio without setting the volume to 0. This works
both for the software and hardware mixers. (Fixes: #186 [https://github.com/mopidy/mopidy/issues/186])

Local backend

	Replaced our custom media library scanner with GStreamer’s builtin scanner.
This should make scanning less error prone and faster as timeouts should be
infrequent. (Fixes: #198 [https://github.com/mopidy/mopidy/issues/198])

	Media files with less than 100ms duration are now excluded from the library.

	Media files with the file extensions .jpeg, .jpg, .png, .txt,
and .log are now skipped by the media library scanner. You can change the
list of excluded file extensions by setting the
local/excluded_file_extensions config value. (Fixes: #516 [https://github.com/mopidy/mopidy/issues/516])

	Unknown URIs found in playlists are now made into track objects with the URI
set instead of being ignored. This makes it possible to have playlists with
e.g. HTTP radio streams and not just local:track:... URIs. This used to
work, but was broken in Mopidy 0.15.0. (Fixes: #527 [https://github.com/mopidy/mopidy/issues/527])

	Fixed crash when playing local:track:... URIs which contained non-ASCII
chars after uridecode.

	Removed media files are now also removed from the in-memory media library
when the media library is reloaded from disk. (Fixes: #500 [https://github.com/mopidy/mopidy/issues/500])

MPD frontend

	Made the formerly unused commands outputs, enableoutput, and
disableoutput mute/unmute audio. (Related to: #186 [https://github.com/mopidy/mopidy/issues/186])

	The MPD command list now works with "albumartist" as its second
argument, e.g. list "album" "albumartist" "anartist". (Fixes:
#468 [https://github.com/mopidy/mopidy/issues/468])

	The MPD commands find and search now accepts albumartist and
track (this is the track number, not the track name) as field types to
limit the search result with.

	The MPD command count is now implemented. It accepts the same type of
arguments as find and search, but returns the number of tracks and
their total playtime instead.

Extension support

	A cookiecutter project for quickly creating new Mopidy extensions have been
created. You can find it at cookiecutter-mopidy-ext [https://github.com/mopidy/cookiecutter-mopidy-ext]. (Fixes: #522 [https://github.com/mopidy/mopidy/issues/522])

v0.15.0 (2013-09-19)

A release with a number of small and medium fixes, with no specific focus.

Dependencies

	Mopidy no longer supports Python 2.6. Currently, the only Python version
supported by Mopidy is Python 2.7. We’re continuously working towards running
Mopidy on Python 3. (Fixes: #344 [https://github.com/mopidy/mopidy/issues/344])

Command line options

	Converted from the optparse to the argparse library for handling command line
options.

	mopidy --show-config will now take into consideration any
mopidy --option arguments appearing later on the command line. This
helps you see the effective configuration for runs with the same
mopidy --options arguments.

Audio

	Added support for audio visualization. audio/visualizer can now be
set to GStreamer visualizers.

	Properly encode localized mixer names before logging.

Local backend

	An album’s number of discs and a track’s disc number are now extracted when
scanning your music collection.

	The scanner now gives up scanning a file after a second, and continues with
the next file. This fixes some hangs on non-media files, like logs. (Fixes:
#476 [https://github.com/mopidy/mopidy/issues/476], #483 [https://github.com/mopidy/mopidy/issues/483])

	Added support for pluggable library updaters. This allows extension writers
to start providing their own custom libraries instead of being stuck with
just our tag cache as the only option.

	Converted local backend to use new local:playlist:path and
local:track:path URI scheme. Also moves support of file:// to
streaming backend.

Spotify backend

	Prepend playlist folder names to the playlist name, so that the playlist
hierarchy from your Spotify account is available in Mopidy. (Fixes:
#62 [https://github.com/mopidy/mopidy/issues/62])

	Fix proxy config values that was broken with the config system change in
0.14. (Fixes: #472 [https://github.com/mopidy/mopidy/issues/472])

MPD frontend

	Replace newline, carriage return and forward slash in playlist names. (Fixes:
#474 [https://github.com/mopidy/mopidy/issues/474], #480 [https://github.com/mopidy/mopidy/issues/480])

	Accept listall and listallinfo commands without the URI parameter.
The methods are still not implemented, but now the commands are accepted as
valid.

HTTP frontend

	Fix too broad truth test that caused mopidy.models.TlTrack
objects with tlid set to 0 to be sent to the HTTP client without the
tlid field. (Fixes: #501 [https://github.com/mopidy/mopidy/issues/501])

	Upgrade Mopidy.js dependencies. This version has been released to npm as
Mopidy.js v0.1.1.

Extension support

	mopidy.config.Secret is now deserialized to unicode instead of
bytes. This may require modifications to extensions.

v0.14.2 (2013-07-01)

This is a maintenance release to make Mopidy 0.14 work with pyspotify 1.11.

Dependencies

	pyspotify >= 1.9, < 2 is now required for Spotify support. In other words,
you’re free to upgrade to pyspotify 1.11, but it isn’t a requirement.

v0.14.1 (2013-04-28)

This release addresses an issue in v0.14.0 where the new
mopidy-convert-config tool and the new mopidy --option
command line option was broken because some string operations inadvertently
converted some byte strings to unicode.

v0.14.0 (2013-04-28)

The 0.14 release has a clear focus on two things: the new configuration system
and extension support. Mopidy’s documentation has also been greatly extended
and improved.

Since the last release a month ago, we’ve closed or merged 53 issues and pull
requests. A total of seven authors have contributed, including
one new.

Dependencies

	setuptools or distribute is now required. We’ve introduced this dependency to
use setuptools’ entry points functionality to find installed Mopidy
extensions.

New configuration system

	Mopidy has a new configuration system based on ini-style files instead of a
Python file. This makes configuration easier for users, and also makes it
possible for Mopidy extensions to have their own config sections.

As part of this change we have cleaned up the naming of our config values.

To ease migration we’ve made a tool named mopidy-convert-config for
automatically converting the old settings.py to a new mopidy.conf
file. This tool takes care of all the renamed config values as well. See
mopidy-convert-config for details on how to use it.

	A long wanted feature: You can now enable or disable specific frontends or
backends without having to redefine FRONTENDS or
BACKENDS in your config. Those config values are
gone completely.

Extension support

	Mopidy now supports extensions. This means that any developer now easily can
create a Mopidy extension to add new control interfaces or music backends.
This helps spread the maintenance burden across more developers, and also
makes it possible to extend Mopidy with new backends the core developers are
unable to create and/or maintain because of geo restrictions, etc. If you’re
interested in creating an extension for Mopidy, read up on
Extension development.

	All of Mopidy’s existing frontends and backends are now plugged into Mopidy
as extensions, but they are still distributed together with Mopidy and are
enabled by default.

	The NAD mixer have been moved out of Mopidy core to its own project,
Mopidy-NAD.

	Janez Troha has made the first two external extensions for Mopidy: a backend
for playing music from Soundcloud, and a backend for playing music from a
Beets music library.

Command line options

	The command option mopidy --list-settings is now named
mopidy --show-config.

	The command option mopidy --list-deps is now named
mopidy --show-deps.

	What configuration files to use can now be specified through the command
option mopidy --config, multiple files can be specified using colon
as a separator.

	Configuration values can now be overridden through the command option
mopidy --option. For example: mopidy --option
spotify/enabled=false.

	The GStreamer command line options, mopidy --gst-* and
mopidy --help-gst are no longer supported. To set GStreamer debug
flags, you can use environment variables such as GST_DEBUG. Refer
to GStreamer’s documentation for details.

Spotify backend

	Add support for starred playlists, both your own and those owned by other
users. (Fixes: #326 [https://github.com/mopidy/mopidy/issues/326])

	Fix crash when a new playlist is added by another Spotify client. (Fixes:
#387 [https://github.com/mopidy/mopidy/issues/387], #425 [https://github.com/mopidy/mopidy/issues/425])

MPD frontend

	Playlists with identical names are now handled properly by the MPD frontend
by suffixing the duplicate names with e.g. [2]. This is needed because
MPD identify playlists by name only, while Mopidy and Spotify supports
multiple playlists with the same name, and identify them using an URI.
(Fixes: #114 [https://github.com/mopidy/mopidy/issues/114])

MPRIS frontend

	The frontend is now disabled if the DISPLAY environment variable is
unset. This avoids some harmless error messages, that have been known to
confuse new users debugging other problems.

Development

	Developers running Mopidy from a Git clone now need to run python setup.py
develop to register the bundled extensions. If you don’t do this, Mopidy
will not find any frontends or backends. Note that we highly recommend you do
this in a virtualenv, not system wide. As a bonus, the command also gives
you a mopidy executable in your search path.

v0.13.0 (2013-03-31)

The 0.13 release brings small improvements and bugfixes throughout Mopidy.
There are no major new features, just incremental improvement of what we
already have.

Dependencies

	Pykka >= 1.1 is now required.

Core

	Removed the mopidy.settings.DEBUG_THREAD setting and the
mopidy --debug-thread command line option. Sending SIGUSR1 to
the Mopidy process will now always make it log tracebacks for all alive
threads.

	Log a warning if a track isn’t playable to make it more obvious that backend
X needs backend Y to be present for playback to work.

	mopidy.core.TracklistController.add() now accepts an uri which it
will lookup in the library and then add to the tracklist. This is helpful
for e.g. web clients that doesn’t want to transfer all track meta data back
to the server just to add it to the tracklist when the server already got all
the needed information easily available. (Fixes: #325 [https://github.com/mopidy/mopidy/issues/325])

	Change the following methods to accept an uris keyword argument:

	mopidy.core.LibraryController.find_exact()

	mopidy.core.LibraryController.search()

Search queries will only be forwarded to backends handling the given URI
roots, and the backends may use the URI roots to further limit what results
are returned. For example, a search with uris=['file:'] will only be
processed by the local backend. A search with
uris=['file:///media/music'] will only be processed by the local backend,
and, if such filtering is supported by the backend, will only return results
with URIs within the given URI root.

Audio sub-system

	Make audio error logging handle log messages with non-ASCII chars. (Fixes:
#347 [https://github.com/mopidy/mopidy/issues/347])

Local backend

	Make mopidy-scan work with Ogg Vorbis files. (Fixes: #275 [https://github.com/mopidy/mopidy/issues/275])

	Fix playback of files with non-ASCII chars in their file path. (Fixes:
#353 [https://github.com/mopidy/mopidy/issues/353])

Spotify backend

	Let GStreamer handle time position tracking and seeks. (Fixes: #191 [https://github.com/mopidy/mopidy/issues/191])

	For all playlists owned by other Spotify users, we now append the owner’s
username to the playlist name. (Partly fixes: #114 [https://github.com/mopidy/mopidy/issues/114])

HTTP frontend

	Mopidy.js now works both from browsers and from Node.js environments. This
means that you now can make Mopidy clients in Node.js. Mopidy.js has been
published to the npm registry [https://www.npmjs.com/package/mopidy] for easy
installation in Node.js projects.

	Upgrade Mopidy.js’ build system Grunt from 0.3 to 0.4.

	Upgrade Mopidy.js’ dependencies when.js from 1.6.1 to 2.0.0.

	Expose mopidy.core.Core.get_uri_schemes() to HTTP clients. It is
available through Mopidy.js as mopidy.getUriSchemes().

MPRIS frontend

	Publish album art URIs if available.

	Publish disc number of track if available.

v0.12.0 (2013-03-12)

The 0.12 release has been delayed for a while because of some issues related
some ongoing GStreamer cleanup we didn’t invest enough time to finish. Finally,
we’ve come to our senses and have now cherry-picked the good parts to bring you
a new release, while postponing the GStreamer changes to 0.13. The release adds
a new backend for playing audio streams, as well as various minor improvements
throughout Mopidy.

	Make Mopidy work on early Python 2.6 versions. (Fixes: #302 [https://github.com/mopidy/mopidy/issues/302])

	optparse fails if the first argument to add_option is a unicode
string on Python < 2.6.2rc1.

	foo(**data) fails if the keys in data is unicode strings on Python
< 2.6.5rc1.

Audio sub-system

	Improve selection of mixer tracks for volume control. (Fixes: #307 [https://github.com/mopidy/mopidy/issues/307])

Local backend

	Make mopidy-scan support symlinks.

Stream backend

We’ve added a new backend for playing audio streams, the stream backend. It is activated by default. The stream backend supports the
intersection of what your GStreamer installation supports and what protocols
are included in the mopidy.settings.STREAM_PROTOCOLS setting.

Current limitations:

	No metadata about the current track in the stream is available.

	Playlists are not parsed, so you can’t play e.g. a M3U or PLS file which
contains stream URIs. You need to extract the stream URL from the playlist
yourself. See #303 [https://github.com/mopidy/mopidy/issues/303] for progress on this.

Core API

	mopidy.core.PlaylistsController.get_playlists() now accepts an argument
include_tracks. This defaults to True, which has the same old
behavior. If set to False, the tracks are stripped from the
playlists before they are returned. This can be used to limit the amount of
data returned if the response is to be passed out of the application, e.g. to
a web client. (Fixes: #297 [https://github.com/mopidy/mopidy/issues/297])

Models

	Add mopidy.models.Album.images field for including album art URIs.
(Partly fixes #263 [https://github.com/mopidy/mopidy/issues/263])

	Add mopidy.models.Track.disc_no field. (Partly fixes: #286 [https://github.com/mopidy/mopidy/issues/286])

	Add mopidy.models.Album.num_discs field. (Partly fixes: #286 [https://github.com/mopidy/mopidy/issues/286])

v0.11.1 (2012-12-24)

Spotify search was broken in 0.11.0 for users of Python 2.6. This release fixes
it. If you’re using Python 2.7, v0.11.0 and v0.11.1 should be equivalent.

v0.11.0 (2012-12-24)

In celebration of Mopidy’s three year anniversary December 23, we’re releasing
Mopidy 0.11. This release brings several improvements, most notably better
search which now includes matching artists and albums from Spotify in the
search results.

Settings

	The settings validator now complains if a setting which expects a tuple of
values (e.g. mopidy.settings.BACKENDS,
mopidy.settings.FRONTENDS) has a non-iterable value. This typically
happens because the setting value contains a single value and one has
forgotten to add a comma after the string, making the value a tuple. (Fixes:
#278 [https://github.com/mopidy/mopidy/issues/278])

Spotify backend

	Add mopidy.settings.SPOTIFY_TIMEOUT setting which allows you to
control how long we should wait before giving up on Spotify searches, etc.

	Add support for looking up albums, artists, and playlists by URI in addition
to tracks. (Fixes: #67 [https://github.com/mopidy/mopidy/issues/67])

As an example of how this can be used, you can try the the following MPD
commands which now all adds one or more tracks to your tracklist:

add "spotify:track:1mwt9hzaH7idmC5UCoOUkz"
add "spotify:album:3gpHG5MGwnipnap32lFYvI"
add "spotify:artist:5TgQ66WuWkoQ2xYxaSTnVP"
add "spotify:user:p3.no:playlist:0XX6tamRiqEgh3t6FPFEkw"

	Increase max number of tracks returned by searches from 100 to 200, which
seems to be Spotify’s current max limit.

Local backend

	Load track dates from tag cache.

	Add support for searching by track date.

MPD frontend

	Add mopidy.settings.MPD_SERVER_CONNECTION_TIMEOUT setting which
controls how long an MPD client can stay inactive before the connection is
closed by the server.

	Add support for the findadd command.

	Updated to match the MPD 0.17 protocol (Fixes: #228 [https://github.com/mopidy/mopidy/issues/228]):

	Add support for seekcur command.

	Add support for config command.

	Add support for loading a range of tracks from a playlist to the load
command.

	Add support for searchadd command.

	Add support for searchaddpl command.

	Add empty stubs for channel commands for client to client communication.

	Add support for search by date.

	Make seek and seekid not restart the current track before seeking in
it.

	Include fake tracks representing albums and artists in the search results.
When these are added to the tracklist, they expand to either all tracks in
the album or all tracks by the artist. This makes it easy to play full albums
in proper order, which is a feature that have been frequently requested.
(Fixes: #67 [https://github.com/mopidy/mopidy/issues/67], #148 [https://github.com/mopidy/mopidy/issues/148])

Internal changes

Models:

	Specified that mopidy.models.Playlist.last_modified should be in UTC.

	Added mopidy.models.SearchResult model to encapsulate search results
consisting of more than just tracks.

Core API:

	Change the following methods to return mopidy.models.SearchResult
objects which can include both track results and other results:

	mopidy.core.LibraryController.find_exact()

	mopidy.core.LibraryController.search()

	Change the following methods to accept either a dict with filters or kwargs.
Previously they only accepted kwargs, which made them impossible to use from
the Mopidy.js through JSON-RPC, which doesn’t support kwargs.

	mopidy.core.LibraryController.find_exact()

	mopidy.core.LibraryController.search()

	mopidy.core.PlaylistsController.filter()

	mopidy.core.TracklistController.filter()

	mopidy.core.TracklistController.remove()

	Actually trigger the mopidy.core.CoreListener.volume_changed() event.

	Include the new volume level in the
mopidy.core.CoreListener.volume_changed() event.

	The track_playback_{paused,resumed,started,ended} events now include a
mopidy.models.TlTrack instead of a mopidy.models.Track.

Audio:

	Mixers with fewer than 100 volume levels could report another volume level
than what you just set due to the conversion between Mopidy’s 0-100 range and
the mixer’s range. Now Mopidy returns the recently set volume if the mixer
reports a volume level that matches the recently set volume, otherwise the
mixer’s volume level is rescaled to the 1-100 range and returned.

v0.10.0 (2012-12-12)

We’ve added an HTTP frontend for those wanting to build web clients for Mopidy!

Dependencies

	pyspotify >= 1.9, < 1.11 is now required for Spotify support. In other words,
you’re free to upgrade to pyspotify 1.10, but it isn’t a requirement.

Documentation

	Added installation instructions for Fedora.

Spotify backend

	Save a lot of memory by reusing artist, album, and track models.

	Make sure the playlist loading hack only runs once.

Local backend

	Change log level from error to warning on messages emitted when the tag cache
isn’t found and a couple of similar cases.

	Make mopidy-scan ignore invalid dates, e.g. dates in years outside the
range 1-9999.

	Make mopidy-scan accept -q/--quiet and -v/--verbose
options to control the amount of logging output when scanning.

	The scanner can now handle files with other encodings than UTF-8. Rebuild
your tag cache with mopidy-scan to include tracks that may have been
ignored previously.

HTTP frontend

	Added new optional HTTP frontend which exposes Mopidy’s core API through
JSON-RPC 2.0 messages over a WebSocket. See HTTP JSON-RPC API for further
details.

	Added a JavaScript library, Mopidy.js, to make it easier to develop web based
Mopidy clients using the new HTTP frontend.

Bug fixes

	#256 [https://github.com/mopidy/mopidy/issues/256]: Fix crash caused by non-ASCII characters in paths returned from
glib. The bug can be worked around by overriding the settings that
includes offending $XDG_ variables.

v0.9.0 (2012-11-21)

Support for using the local and Spotify backends simultaneously have for a very
long time been our most requested feature. Finally, it’s here!

Dependencies

	pyspotify >= 1.9, < 1.10 is now required for Spotify support.

Documentation

	New Installation guides, organized by OS and distribution so that you
can follow one concise list of instructions instead of jumping around the
docs to look for instructions for each dependency.

	Moved Raspberry Pi howto from the wiki to the docs.

	Updated MPD clients overview.

	Added MPRIS clients and UPnP clients overview.

Multiple backends support

	Both the local backend and the Spotify backend are now turned on by default.
The local backend is listed first in the mopidy.settings.BACKENDS
setting, and are thus given the highest priority in e.g. search results,
meaning that we’re listing search hits from the local backend first. If you
want to prioritize the backends in another way, simply set BACKENDS in
your own settings file and reorder the backends.

There are no other setting changes related to the local and Spotify backends.
As always, see mopidy.settings for the full list of available
settings.

Spotify backend

	The Spotify backend now includes release year and artist on albums.

	#233 [https://github.com/mopidy/mopidy/issues/233]: The Spotify backend now returns the track if you search for the
Spotify track URI.

	Added support for connecting to the Spotify service through an HTTP or SOCKS
proxy, which is supported by pyspotify >= 1.9.

	Subscriptions to other Spotify user’s “starred” playlists are ignored, as
they currently isn’t fully supported by pyspotify.

Local backend

	#236 [https://github.com/mopidy/mopidy/issues/236]: The mopidy-scan command failed to include tags from ALAC
files (Apple lossless) because it didn’t support multiple tag messages from
GStreamer per track it scanned.

	Added support for search by filename to local backend.

MPD frontend

	#218 [https://github.com/mopidy/mopidy/issues/218]: The MPD commands listplaylist and listplaylistinfo now
accepts unquoted playlist names if they don’t contain spaces.

	#246 [https://github.com/mopidy/mopidy/issues/246]: The MPD command list album artist "" and similar
search, find, and list commands with empty filter values caused a
LookupError [https://docs.python.org/3/library/exceptions.html#LookupError], but should have been ignored by the MPD server.

	The MPD frontend no longer lowercases search queries. This broke e.g. search
by URI, where casing may be essential.

	The MPD command plchanges always returned the entire playlist. It now
returns an empty response when the client has seen the latest version.

	The MPD commands search and find now allows the key file, which
is used by ncmpcpp instead of filename.

	The MPD commands search and find now allow search query values to be
empty strings.

	The MPD command listplaylists will no longer return playlists without a
name. This could crash ncmpcpp.

	The MPD command list will no longer return artist names, album names, or
dates that are blank.

	The MPD command decoders will now return an empty response instead of a
“not implemented” error to make the ncmpcpp browse view work the first time
it is opened.

MPRIS frontend

	The MPRIS playlists interface is now supported by our MPRIS frontend. This
means that you now can select playlists to queue and play from the Ubuntu
Sound Menu.

Audio mixers

	Made the NAD mixer responsive to interrupts
during amplifier calibration. It will now quit immediately, while previously
it completed the calibration first, and then quit, which could take more than
15 seconds.

Developer support

	Added optional background thread for debugging deadlocks. When the feature is
enabled via the mopidy --debug-thread option or
mopidy.settings.DEBUG_THREAD setting a SIGUSR1 signal will dump
the traceback for all running threads.

	The settings validator will now allow any setting prefixed with CUSTOM_
to exist in the settings file.

Internal changes

Internally, Mopidy have seen a lot of changes to pave the way for multiple
backends and the future HTTP frontend.

	A new layer and actor, “core”, has been added to our stack, inbetween the
frontends and the backends. The responsibility of the core layer and actor is
to take requests from the frontends, pass them on to one or more backends,
and combining the response from the backends into a single response to the
requesting frontend.

Frontends no longer know anything about the backends. They just use the
mopidy.core — Core API.

	The dependency graph between the core controllers and the backend providers
have been straightened out, so that we don’t have any circular dependencies.
The frontend, core, backend, and audio layers are now strictly separate. The
frontend layer calls on the core layer, and the core layer calls on the
backend layer. Both the core layer and the backends are allowed to call on
the audio layer. Any data flow in the opposite direction is done by
broadcasting of events to listeners, through e.g.
mopidy.core.CoreListener and mopidy.audio.AudioListener.

See Architecture for more details and illustrations of all the relations.

	All dependencies are now explicitly passed to the constructors of the
frontends, core, and the backends. This makes testing each layer with
dummy/mocked lower layers easier than with the old variant, where
dependencies where looked up in Pykka’s actor registry.

	All properties in the core API now got getters, and setters if setting them
is allowed. They are not explicitly listed in the docs as they have the same
behavior as the documented properties, but they are available and may be
used. This is useful for the future HTTP frontend.

Models:

	Added mopidy.models.Album.date attribute. It has the same format as
the existing mopidy.models.Track.date.

	Added mopidy.models.ModelJSONEncoder and
mopidy.models.model_json_decoder() for automatic JSON serialization and
deserialization of data structures which contains Mopidy models. This is
useful for the future HTTP frontend.

Library:

	mopidy.core.LibraryController.find_exact() and
mopidy.core.LibraryController.search() now returns plain lists of
tracks instead of playlist objects.

	mopidy.core.LibraryController.lookup() now returns a list of tracks
instead of a single track. This makes it possible to support lookup of
artist or album URIs which then can expand to a list of tracks.

Playback:

	The base playback provider has been updated with sane default behavior
instead of empty functions. By default, the playback provider now lets
GStreamer keep track of the current track’s time position. The local backend
simply uses the base playback provider without any changes. Any future
backend that just feeds URIs to GStreamer to play can also use the base
playback provider without any changes.

	Removed mopidy.core.PlaybackController.track_at_previous. Use
mopidy.core.PlaybackController.tl_track_at_previous instead.

	Removed mopidy.core.PlaybackController.track_at_next. Use
mopidy.core.PlaybackController.tl_track_at_next instead.

	Removed mopidy.core.PlaybackController.track_at_eot. Use
mopidy.core.PlaybackController.tl_track_at_eot instead.

	Removed mopidy.core.PlaybackController.current_tlid. Use
mopidy.core.PlaybackController.current_tl_track instead.

Playlists:

The playlists part of the core API has been revised to be more focused around
the playlist URI, and some redundant functionality has been removed:

	Renamed “stored playlists” to “playlists” everywhere, including the core API
used by frontends.

	mopidy.core.PlaylistsController.playlists no longer supports
assignment to it. The playlists property on the backend layer still does,
and all functionality is maintained by assigning to the playlists collections
at the backend level.

	mopidy.core.PlaylistsController.delete() now accepts an URI, and not a
playlist object.

	mopidy.core.PlaylistsController.save() now returns the saved playlist.
The returned playlist may differ from the saved playlist, and should thus be
used instead of the playlist passed to
mopidy.core.PlaylistsController.save().

	mopidy.core.PlaylistsController.rename() has been removed, since
renaming can be done with mopidy.core.PlaylistsController.save().

	mopidy.core.PlaylistsController.get() has been replaced by
mopidy.core.PlaylistsController.filter().

	The event mopidy.core.CoreListener.playlist_changed() has been changed
to include the playlist that was changed.

Tracklist:

	Renamed “current playlist” to “tracklist” everywhere, including the core API
used by frontends.

	Removed mopidy.core.TracklistController.append(). Use
mopidy.core.TracklistController.add() instead, which is now capable of
adding multiple tracks.

	mopidy.core.TracklistController.get() has been replaced by
mopidy.core.TracklistController.filter().

	mopidy.core.TracklistController.remove() can now remove multiple
tracks, and returns the tracks it removed.

	When the tracklist is changed, we now trigger the new
mopidy.core.CoreListener.tracklist_changed() event. Previously we
triggered mopidy.core.CoreListener.playlist_changed(), which is
intended for stored playlists, not the tracklist.

Towards Python 3 support:

	Make the entire code base use unicode strings by default, and only fall back
to bytestrings where it is required. Another step closer to Python 3.

v0.8.1 (2012-10-30)

A small maintenance release to fix a bug introduced in 0.8.0 and update Mopidy
to work with Pykka 1.0.

Dependencies

	Pykka >= 1.0 is now required.

Bug fixes

	#213 [https://github.com/mopidy/mopidy/issues/213]: Fix “streaming task paused, reason not-negotiated” errors
observed by some users on some Spotify tracks due to a change introduced in
0.8.0. See the issue for a patch that applies to 0.8.0.

	#216 [https://github.com/mopidy/mopidy/issues/216]: Volume returned by the MPD command status contained a
floating point .0 suffix. This bug was introduced with the large audio
output and mixer changes in v0.8.0 and broke the MPDroid Android client. It
now returns an integer again.

v0.8.0 (2012-09-20)

This release does not include any major new features. We’ve done a major
cleanup of how audio outputs and audio mixers work, and on the way we’ve
resolved a bunch of related issues.

Audio output and mixer changes

	Removed multiple outputs support. Having this feature currently seems to be
more trouble than what it is worth. The mopidy.settings.OUTPUTS
setting is no longer supported, and has been replaced with
mopidy.settings.OUTPUT which is a GStreamer bin description string in
the same format as gst-launch expects. Default value is
autoaudiosink. (Fixes: #81 [https://github.com/mopidy/mopidy/issues/81], #115 [https://github.com/mopidy/mopidy/issues/115], #121 [https://github.com/mopidy/mopidy/issues/121],
#159 [https://github.com/mopidy/mopidy/issues/159])

	Switch to pure GStreamer based mixing. This implies that users setup a
GStreamer bin with a mixer in it in mopidy.settings.MIXER. The
default value is autoaudiomixer, a custom mixer that attempts to find a
mixer that will work on your system. If this picks the wrong mixer you can of
course override it. Setting the mixer to None is also supported. MPD
protocol support for volume has also been updated to return -1 when we have
no mixer set. software can be used to force software mixing.

	Removed the Denon hardware mixer, as it is not maintained.

	Updated the NAD hardware mixer to work in the new GStreamer based mixing
regime. Settings are now passed as GStreamer element properties. In practice
that means that the following old-style config:

MIXER = u'mopidy.mixers.nad.NadMixer'
MIXER_EXT_PORT = u'/dev/ttyUSB0'
MIXER_EXT_SOURCE = u'Aux'
MIXER_EXT_SPEAKERS_A = u'On'
MIXER_EXT_SPEAKERS_B = u'Off'

Now is reduced to simply:

MIXER = u'nadmixer port=/dev/ttyUSB0 source=aux speakers-a=on speakers-b=off'

The port property defaults to /dev/ttyUSB0, and the rest of the
properties may be left out if you don’t want the mixer to adjust the settings
on your NAD amplifier when Mopidy is started.

Changes

	When unknown settings are encountered, we now check if it’s similar to a
known setting, and suggests to the user what we think the setting should have
been.

	Added mopidy --list-deps option that lists required and optional
dependencies, their current versions, and some other information useful for
debugging. (Fixes: #74 [https://github.com/mopidy/mopidy/issues/74])

	Added tools/debug-proxy.py to tee client requests to two backends and
diff responses. Intended as a developer tool for checking for MPD protocol
changes and various client support. Requires gevent, which currently is not a
dependency of Mopidy.

	Support tracks with only release year, and not a full release date, like e.g.
Spotify tracks.

	Default value of LOCAL_MUSIC_PATH has been updated to be
$XDG_MUSIC_DIR, which on most systems this is set to $HOME. Users of
local backend that relied on the old default ~/music need to update their
settings. Note that the code responsible for finding this music now also
ignores UNIX hidden files and folders.

	File and path settings now support $XDG_CACHE_DIR, $XDG_DATA_DIR and
$XDG_MUSIC_DIR substitution. Defaults for such settings have been updated
to use this instead of hidden away defaults.

	Playback is now done using playbin2 from GStreamer instead of rolling our
own. This is the first step towards resolving #171 [https://github.com/mopidy/mopidy/issues/171].

Bug fixes

	#72 [https://github.com/mopidy/mopidy/issues/72]: Created a Spotify track proxy that will switch to using loaded
data as soon as it becomes available.

	#150 [https://github.com/mopidy/mopidy/issues/150]: Fix bug which caused some clients to block Mopidy completely.
The bug was caused by some clients sending close and then shutting down
the connection right away. This triggered a situation in which the connection
cleanup code would wait for an response that would never come inside the
event loop, blocking everything else.

	#162 [https://github.com/mopidy/mopidy/issues/162]: Fixed bug when the MPD command playlistinfo is used with a
track position. Track position and CPID was intermixed, so it would cause a
crash if a CPID matching the track position didn’t exist.

	Fixed crash on lookup of unknown path when using local backend.

	#189 [https://github.com/mopidy/mopidy/issues/189]: LOCAL_MUSIC_PATH and path handling in rest of settings has
been updated so all of the code now uses the correct value.

	Fixed incorrect track URIs generated by M3U playlist parsing code. Generated
tracks are now relative to LOCAL_MUSIC_PATH.

	#203 [https://github.com/mopidy/mopidy/issues/203]: Re-add support for software mixing.

v0.7.3 (2012-08-11)

A small maintenance release to fix a crash affecting a few users, and a couple
of small adjustments to the Spotify backend.

Changes

	Fixed crash when logging IOError [https://docs.python.org/3/library/exceptions.html#IOError] exceptions on systems using languages
with non-ASCII characters, like French.

	Move the default location of the Spotify cache from ~/.cache/mopidy to
~/.cache/mopidy/spotify. You can change this by setting
mopidy.settings.SPOTIFY_CACHE_PATH.

	Reduce time required to update the Spotify cache on startup. One one
system/Spotify account, the time from clean cache to ready for use was
reduced from 35s to 12s.

v0.7.2 (2012-05-07)

This is a maintenance release to make Mopidy 0.7 build on systems without all
of Mopidy’s runtime dependencies, like Launchpad PPAs.

Changes

	Change from version tuple at mopidy.VERSION to PEP 386 [https://peps.python.org/pep-0386/] compliant
version string at mopidy.__version__ to conform to PEP 396 [https://peps.python.org/pep-0396/].

v0.7.1 (2012-04-22)

This is a maintenance release to make Mopidy 0.7 work with pyspotify >= 1.7.

Changes

	Don’t override pyspotify’s notify_main_thread callback. The default
implementation is sensible, while our override did nothing.

v0.7.0 (2012-02-25)

Not a big release with regard to features, but this release got some
performance improvements over v0.6, especially for slower Atom systems. It also
fixes a couple of other bugs, including one which made Mopidy crash when using
GStreamer from the prereleases of Ubuntu 12.04.

Changes

	The MPD command playlistinfo is now faster, thanks to John Bäckstrand.

	Added the method
mopidy.backends.base.CurrentPlaylistController.length(),
mopidy.backends.base.CurrentPlaylistController.index(), and
mopidy.backends.base.CurrentPlaylistController.slice() to reduce the
need for copying the entire current playlist from one thread to another.
Thanks to John Bäckstrand for pinpointing the issue.

	Fix crash on creation of config and cache directories if intermediate
directories does not exist. This was especially the case on OS X, where
~/.config doesn’t exist for most users.

	Fix gst.LinkError which appeared when using newer versions of GStreamer,
e.g. on Ubuntu 12.04 Alpha. (Fixes: #144 [https://github.com/mopidy/mopidy/issues/144])

	Fix crash on mismatching quotation in list MPD queries. (Fixes:
#137 [https://github.com/mopidy/mopidy/issues/137])

	Volume is now reported to be the same as the volume was set to, also when
internal rounding have been done due to
mopidy.settings.MIXER_MAX_VOLUME has been set to cap the volume. This
should make it possible to manage capped volume from clients that only
increase volume with one step at a time, like ncmpcpp does.

v0.6.1 (2011-12-28)

This is a maintenance release to make Mopidy 0.6 work with pyspotify >= 1.5,
which Mopidy’s develop branch have supported for a long time. This should also
make the Debian packages work out of the box again.

Important changes

	pyspotify 1.5 or greater is required.

Changes

	Spotify playlist folder boundaries are now properly detected. In other words,
if you use playlist folders, you will no longer get lots of log messages
about bad playlists.

v0.6.0 (2011-10-09)

The development of Mopidy have been quite slow for the last couple of months,
but we do have some goodies to release which have been idling in the
develop branch since the warmer days of the summer. This release brings support
for the MPD idle command, which makes it possible for a client wait for
updates from the server instead of polling every second. Also, we’ve added
support for the MPRIS standard, so that Mopidy can be controlled over D-Bus
from e.g. the Ubuntu Sound Menu.

Please note that 0.6.0 requires some updated dependencies, as listed under
Important changes below.

Important changes

	Pykka 0.12.3 or greater is required.

	pyspotify 1.4 or greater is required.

	All config, data, and cache locations are now based on the XDG spec.

	This means that your settings file will need to be moved from
~/.mopidy/settings.py to ~/.config/mopidy/settings.py.

	Your Spotify cache will now be stored in ~/.cache/mopidy instead of
~/.mopidy/spotify_cache.

	The local backend’s tag_cache should now be in
~/.local/share/mopidy/tag_cache, likewise your playlists will be in
~/.local/share/mopidy/playlists.

	The local client now tries to lookup where your music is via XDG, it will
fall-back to ~/music or use whatever setting you set manually.

	The MPD command idle is now supported by Mopidy for the following
subsystems: player, playlist, options, and mixer. (Fixes: #32 [https://github.com/mopidy/mopidy/issues/32])

	A new frontend mopidy.frontends.mpris have been added. It exposes
Mopidy through the MPRIS interface [http://specifications.freedesktop.org/mpris-spec/latest/] over D-Bus. In
practice, this makes it possible to control Mopidy through the Ubuntu Sound
Menu [https://wiki.ubuntu.com/Sound#menu].

Changes

	Replace mopidy.backends.base.Backend.uri_handlers with
mopidy.backends.base.Backend.uri_schemes, which just takes the part
up to the colon of an URI, and not any prefix.

	Add Listener API, mopidy.listeners, to be implemented by actors
wanting to receive events from the backend. This is a formalization of the
ad hoc events the Last.fm scrobbler has already been using for some time.

	Replaced all of the MPD network code that was provided by asyncore with
custom stack. This change was made to facilitate support for the idle
command, and to reduce the number of event loops being used.

	Fix metadata update in Shoutcast streaming. (Fixes: #122 [https://github.com/mopidy/mopidy/issues/122])

	Unescape all incoming MPD requests. (Fixes: #113 [https://github.com/mopidy/mopidy/issues/113])

	Increase the maximum number of results returned by Spotify searches from 32
to 100.

	Send Spotify search queries to pyspotify as unicode objects, as required by
pyspotify 1.4. (Fixes: #129 [https://github.com/mopidy/mopidy/issues/129])

	Add setting mopidy.settings.MPD_SERVER_MAX_CONNECTIONS. (Fixes:
#134 [https://github.com/mopidy/mopidy/issues/134])

	Remove destroy() methods from backend controller and provider APIs, as it
was not in use and actually not called by any code. Will reintroduce when
needed.

v0.5.0 (2011-06-15)

Since last time we’ve added support for audio streaming to SHOUTcast servers
and fixed the longstanding playlist loading issue in the Spotify backend. As
always the release has a bunch of bug fixes and minor improvements.

Please note that 0.5.0 requires some updated dependencies, as listed under
Important changes below.

Important changes

	If you use the Spotify backend, you must upgrade to libspotify 0.0.8 and
pyspotify 1.3. If you install from APT, libspotify and pyspotify will
automatically be upgraded. If you are not installing from APT, follow the
instructions at Installation.

	If you have explicitly set the mopidy.settings.SPOTIFY_HIGH_BITRATE
setting, you must update your settings file. The new setting is named
mopidy.settings.SPOTIFY_BITRATE and accepts the integer values 96,
160, and 320.

	Mopidy now supports running with 1 to N outputs at the same time. This
feature was mainly added to facilitate SHOUTcast support, which Mopidy has
also gained. In its current state outputs can not be toggled during runtime.

Changes

	Local backend:

	Fix local backend time query errors that where coming from stopped
pipeline. (Fixes: #87 [https://github.com/mopidy/mopidy/issues/87])

	Spotify backend:

	Thanks to Antoine Pierlot-Garcin’s recent work on updating and improving
pyspotify, stored playlists will again load when Mopidy starts. The
workaround of searching and reconnecting to make the playlists appear are
no longer necessary. (Fixes: #59 [https://github.com/mopidy/mopidy/issues/59])

	Track’s that are no longer available in Spotify’s archives are now
“autolinked” to corresponding tracks in other albums, just like the
official Spotify clients do. (Fixes: #34 [https://github.com/mopidy/mopidy/issues/34])

	MPD frontend:

	Refactoring and cleanup. Most notably, all request handlers now get an
instance of mopidy.frontends.mpd.dispatcher.MpdContext as the
first argument. The new class contains reference to any object in Mopidy
the MPD protocol implementation should need access to.

	Close the client connection when the command close is received.

	Do not allow access to the command kill.

	commands and notcommands now have correct output if password
authentication is turned on, but the connected user has not been
authenticated yet.

	Command line usage:

	Support passing options to GStreamer. See mopidy --help-gst for a list
of available options. (Fixes: #95 [https://github.com/mopidy/mopidy/issues/95])

	Improve mopidy --list-settings output. (Fixes: #91 [https://github.com/mopidy/mopidy/issues/91])

	Added mopidy --interactive for reading missing local settings from
stdin. (Fixes: #96 [https://github.com/mopidy/mopidy/issues/96])

	Improve shutdown procedure at CTRL+C. Add signal handler for SIGTERM,
which initiates the same shutdown procedure as CTRL+C does.

	Tag cache generator:

	Made it possible to abort mopidy-scan with CTRL+C.

	Fixed bug regarding handling of bad dates.

	Use logging [https://docs.python.org/3/library/logging.html#module-logging] instead of print statements.

	Found and worked around strange WMA metadata behaviour.

	Backend API:

	Calling on mopidy.backends.base.playback.PlaybackController.next()
and mopidy.backends.base.playback.PlaybackController.previous() no
longer implies that playback should be started. The playback state–whether
playing, paused or stopped–will now be kept.

	The method
mopidy.backends.base.playback.PlaybackController.change_track()
has been added. Like next(), and prev(), it changes the current
track without changing the playback state.

v0.4.1 (2011-05-06)

This is a bug fix release fixing audio problems on older GStreamer and some
minor bugs.

Bug fixes

	Fix broken audio on at least GStreamer 0.10.30, which affects Ubuntu 10.10.
The GStreamer appsrc bin wasn’t being linked due to lack of default caps.
(Fixes: #85 [https://github.com/mopidy/mopidy/issues/85])

	Fix crash in mopidy.mixers.nad that occurs at startup when the
io [https://docs.python.org/3/library/io.html#module-io] module is available. We used an eol keyword argument which is
supported by serial.FileLike.readline(), but not by
io.RawBaseIO.readline(). When the io [https://docs.python.org/3/library/io.html#module-io] module is available, it is
used by PySerial instead of the FileLike implementation.

	Fix UnicodeDecodeError in MPD frontend on non-english locale. Thanks to
Antoine Pierlot-Garcin for the patch. (Fixes: #88 [https://github.com/mopidy/mopidy/issues/88])

	Do not create Pykka proxies that are not going to be used in
mopidy.core. The underlying actor may already intentionally be dead,
and thus the program may crash on creating a proxy it doesn’t need. Combined
with the Pykka 0.12.2 release this fixes a crash in the Last.fm frontend
which may occur when all dependencies are installed, but the frontend isn’t
configured. (Fixes: #84 [https://github.com/mopidy/mopidy/issues/84])

v0.4.0 (2011-04-27)

Mopidy 0.4.0 is another release without major feature additions. In 0.4.0 we’ve
fixed a bunch of issues and bugs, with the help of several new contributors
who are credited in the changelog below. The major change of 0.4.0 is an
internal refactoring which clears way for future features, and which also make
Mopidy work on Python 2.7. In other words, Mopidy 0.4.0 works on Ubuntu 11.04
and Arch Linux.

Please note that 0.4.0 requires some updated dependencies, as listed under
Important changes below. Also, the known bug in the Spotify playlist
loading from Mopidy 0.3.0 is still present.

Warning

Known bug in Spotify playlist loading

There is a known bug in the loading of Spotify playlists. To avoid the bug,
follow the simple workaround described at #59 [https://github.com/mopidy/mopidy/issues/59].

Important changes

	Mopidy now depends on Pykka [http://pykka.readthedocs.org/] >=0.12. If you
install from APT, Pykka will automatically be installed. If you are not
installing from APT, you may install Pykka from PyPI:

sudo pip install -U Pykka

	If you use the Spotify backend, you should upgrade to libspotify 0.0.7 and
the latest pyspotify from the Mopidy developers. If you install from APT,
libspotify and pyspotify will automatically be upgraded. If you are not
installing from APT, follow the instructions at Installation.

Changes

	Mopidy now use Pykka actors for thread management and inter-thread
communication. The immediate advantage of this is that Mopidy now works on
Python 2.7, which is the default on e.g. Ubuntu 11.04. (Fixes: #66 [https://github.com/mopidy/mopidy/issues/66])

	Spotify backend:

	Fixed multiple segmentation faults due to bugs in Pyspotify. Thanks to
Antoine Pierlot-Garcin and Jamie Kirkpatrick for patches to Pyspotify.

	Better error messages on wrong login or network problems. Thanks to Antoine
Pierlot-Garcin for patches to Mopidy and Pyspotify. (Fixes: #77 [https://github.com/mopidy/mopidy/issues/77])

	Reduce log level for trivial log messages from warning to info. (Fixes:
#71 [https://github.com/mopidy/mopidy/issues/71])

	Pause playback on network connection errors. (Fixes: #65 [https://github.com/mopidy/mopidy/issues/65])

	Local backend:

	Fix crash in mopidy-scan if a track has no artist name. Thanks
to Martins Grunskis for test and patch and “octe” for patch.

	Fix crash in tag_cache parsing if a track has no total number of tracks
in the album. Thanks to Martins Grunskis for the patch.

	MPD frontend:

	Add support for “date” queries to both the find and search
commands. This makes media library browsing in ncmpcpp work, though very
slow due to all the meta data requests to Spotify.

	Add support for play "-1" when in playing or paused state, which fixes
resume and addition of tracks to the current playlist while playing for the
MPoD client.

	Fix bug where status returned song: None, which caused MPDroid to
crash. (Fixes: #69 [https://github.com/mopidy/mopidy/issues/69])

	Gracefully fallback to IPv4 sockets on systems that supports IPv6, but has
turned it off. (Fixes: #75 [https://github.com/mopidy/mopidy/issues/75])

	GStreamer output:

	Use uridecodebin for playing audio from both Spotify and the local
backend. This contributes to support for multiple backends simultaneously.

	Settings:

	Fix crash on mopidy --list-settings on clean installation. Thanks to
Martins Grunskis for the bug report and patch. (Fixes: #63 [https://github.com/mopidy/mopidy/issues/63])

	Packaging:

	Replace test data symlinks with real files to avoid symlink issues when
installing with pip. (Fixes: #68 [https://github.com/mopidy/mopidy/issues/68])

	Debugging:

	Include platform, architecture, Linux distribution, and Python version in
the debug log, to ease debugging of issues with attached debug logs.

v0.3.1 (2011-01-22)

A couple of fixes to the 0.3.0 release is needed to get a smooth installation.

Bug fixes

	The Spotify application key was missing from the Python package.

	Installation of the Python package as a normal user failed because it did not
have permissions to install mopidy.desktop. The file is now only
installed if the installation is executed as the root user.

v0.3.0 (2011-01-22)

Mopidy 0.3.0 brings a bunch of small changes all over the place, but no large
changes. The main features are support for high bitrate audio from Spotify, and
MPD password authentication.

Regarding the docs, we’ve improved the installation instructions and done a bit of testing of the available Android
and iOS clients for MPD.

Please note that 0.3.0 requires some updated dependencies, as listed under
Important changes below. Also, there is a known bug in the Spotify playlist
loading, as described below. As the bug will take some time to fix and has a
known workaround, we did not want to delay the release while waiting for a fix
to this problem.

Warning

Known bug in Spotify playlist loading

There is a known bug in the loading of Spotify playlists. This bug affects
both Mopidy 0.2.1 and 0.3.0, given that you use libspotify 0.0.6. To avoid
the bug, either use Mopidy 0.2.1 with libspotify 0.0.4, or use either
Mopidy version with libspotify 0.0.6 and follow the simple workaround
described at #59 [https://github.com/mopidy/mopidy/issues/59].

Important changes

	If you use the Spotify backend, you need to upgrade to libspotify 0.0.6 and
the latest pyspotify from the Mopidy developers. Follow the instructions at
Installation.

	If you use the Last.fm frontend, you need to upgrade to pylast 0.5.7. Run
sudo pip install --upgrade pylast or install Mopidy from APT.

Changes

	Spotify backend:

	Support high bitrate (320k) audio. Set the new setting
mopidy.settings.SPOTIFY_HIGH_BITRATE to True to switch to
high bitrate audio.

	Rename mopidy.backends.libspotify to mopidy.backends.spotify.
If you have set mopidy.settings.BACKENDS explicitly, you may need
to update the setting’s value.

	Catch and log error caused by playlist folder boundaries being threated as
normal playlists. More permanent fix requires support for checking playlist
types in pyspotify (see #62 [https://github.com/mopidy/mopidy/issues/62]).

	Fix crash on failed lookup of track by URI. (Fixes: #60 [https://github.com/mopidy/mopidy/issues/60])

	Local backend:

	Add mopidy-scan command to generate tag_cache files without
any help from the original MPD server. See
“Generating a local library” for instructions on how to use it.

	Fix support for UTF-8 encoding in tag caches.

	MPD frontend:

	Add support for password authentication. See
mopidy.settings.MPD_SERVER_PASSWORD for details on how to use it.
(Fixes: #41 [https://github.com/mopidy/mopidy/issues/41])

	Support setvol 50 without quotes around the argument. Fixes volume
control in Droid MPD.

	Support seek 1 120 without quotes around the arguments. Fixes seek in
Droid MPD.

	Last.fm frontend:

	Update to use Last.fm’s new Scrobbling 2.0 API, as the old Submissions
Protocol 1.2.1 is deprecated. (Fixes: #33 [https://github.com/mopidy/mopidy/issues/33])

	Fix crash when track object does not contain all the expected meta data.

	Fix crash when response from Last.fm cannot be decoded as UTF-8. (Fixes:
#37 [https://github.com/mopidy/mopidy/issues/37])

	Fix crash when response from Last.fm contains invalid XML.

	Fix crash when response from Last.fm has an invalid HTTP status line.

	Mixers:

	Support use of unicode strings for settings specific to
mopidy.mixers.nad.

	Settings:

	Automatically expand the “~” character to the user’s home directory and
make the path absolute for settings with names ending in _PATH or
_FILE.

	Rename the following settings. The settings validator will warn you if you
need to change your local settings.

	LOCAL_MUSIC_FOLDER to mopidy.settings.LOCAL_MUSIC_PATH

	LOCAL_PLAYLIST_FOLDER to
mopidy.settings.LOCAL_PLAYLIST_PATH

	LOCAL_TAG_CACHE to mopidy.settings.LOCAL_TAG_CACHE_FILE

	SPOTIFY_LIB_CACHE to mopidy.settings.SPOTIFY_CACHE_PATH

	Fix bug which made settings set to None or 0 cause a
mopidy.SettingsError to be raised.

	Packaging and distribution:

	Setup APT repository and create Debian packages of Mopidy. See
Installation for instructions for how to install Mopidy, including
all dependencies, from APT.

	Install mopidy.desktop file that makes Mopidy available from e.g. Gnome
application menus.

	API:

	Rename and generalize Playlist._with(**kwargs) to
mopidy.models.ImmutableObject.copy().

	Add musicbrainz_id field to mopidy.models.Artist,
mopidy.models.Album, and mopidy.models.Track.

	Prepare for multi-backend support (see #40 [https://github.com/mopidy/mopidy/issues/40]) by introducing the
provider concept. Split the backend API into a
backend controller API (for frontend use)
and a backend provider API (for backend
implementation use), which includes the following changes:

	Rename BaseBackend to mopidy.backends.base.Backend.

	Rename BaseCurrentPlaylistController to
mopidy.backends.base.CurrentPlaylistController.

	Split BaseLibraryController to
mopidy.backends.base.LibraryController and
mopidy.backends.base.BaseLibraryProvider.

	Split BasePlaybackController to
mopidy.backends.base.PlaybackController and
mopidy.backends.base.BasePlaybackProvider.

	Split BaseStoredPlaylistsController to
mopidy.backends.base.StoredPlaylistsController and
mopidy.backends.base.BaseStoredPlaylistsProvider.

	Move BaseMixer to mopidy.mixers.base.BaseMixer.

	Add docs for the current non-stable output API,
mopidy.outputs.base.BaseOutput.

v0.2.1 (2011-01-07)

This is a maintenance release without any new features.

Bug fixes

	Fix crash in mopidy.frontends.lastfm which occurred at playback if
either pylast was not installed or the Last.fm scrobbling was not
correctly configured. The scrobbling thread now shuts properly down at
failure.

v0.2.0 (2010-10-24)

In Mopidy 0.2.0 we’ve added a Last.fm [http://www.last.fm/] scrobbling
support, which means that Mopidy now can submit meta data about the tracks you
play to your Last.fm profile. See mopidy.frontends.lastfm for
details on new dependencies and settings. If you use Mopidy’s Last.fm support,
please join the Mopidy group at Last.fm [http://www.last.fm/group/Mopidy].

With the exception of the work on the Last.fm scrobbler, there has been a
couple of quiet months in the Mopidy camp. About the only thing going on, has
been stabilization work and bug fixing. All bugs reported on GitHub, plus some,
have been fixed in 0.2.0. Thus, we hope this will be a great release!

We’ve worked a bit on OS X support, but not all issues are completely solved
yet. #25 [https://github.com/mopidy/mopidy/issues/25] is the one that is currently blocking OS X support. Any help
solving it will be greatly appreciated!

Finally, please update your pyspotify installation when
upgrading to Mopidy 0.2.0. The latest pyspotify got a fix for the segmentation
fault that occurred when playing music and searching at the same time, thanks
to Valentin David.

Important changes

	Added a Last.fm scrobbler. See mopidy.frontends.lastfm for details.

Changes

	Logging and command line options:

	Simplify the default log format,
mopidy.settings.CONSOLE_LOG_FORMAT. From a user’s point of view:
Less noise, more information.

	Rename the mopidy --dump command line option to
mopidy --save-debug-log.

	Rename setting mopidy.settings.DUMP_LOG_FORMAT to
mopidy.settings.DEBUG_LOG_FORMAT and use it for
mopidy --verbose too.

	Rename setting mopidy.settings.DUMP_LOG_FILENAME to
mopidy.settings.DEBUG_LOG_FILENAME.

	MPD frontend:

	MPD command list now supports queries by artist, album name, and date,
as used by e.g. the Ario client. (Fixes: #20 [https://github.com/mopidy/mopidy/issues/20])

	MPD command add "" and addid "" now behaves as expected. (Fixes
#16 [https://github.com/mopidy/mopidy/issues/16])

	MPD command playid "-1" now correctly resumes playback if paused.

	Random mode:

	Fix wrong behavior on end of track and next after random mode has been
used. (Fixes: #18 [https://github.com/mopidy/mopidy/issues/18])

	Fix infinite recursion loop crash on playback of non-playable tracks when
in random mode. (Fixes #17 [https://github.com/mopidy/mopidy/issues/17])

	Fix assertion error that happened if one removed tracks from the current
playlist, while in random mode. (Fixes #22 [https://github.com/mopidy/mopidy/issues/22])

	Switched from using subprocesses to threads. (Fixes: #14 [https://github.com/mopidy/mopidy/issues/14])

	mopidy.outputs.gstreamer: Set caps on the appsrc bin before
use. This makes sound output work with GStreamer >= 0.10.29, which includes
the versions used in Ubuntu 10.10 and on OS X if using Homebrew. (Fixes:
#21 [https://github.com/mopidy/mopidy/issues/21], #24 [https://github.com/mopidy/mopidy/issues/24], contributes to #14 [https://github.com/mopidy/mopidy/issues/14])

	Improved handling of uncaught exceptions in threads. The entire process
should now exit immediately.

v0.1.0 (2010-08-23)

After three weeks of long nights and sprints we’re finally pleased enough with
the state of Mopidy to remove the alpha label, and do a regular release.

Mopidy 0.1.0 got important improvements in search functionality, working track
position seeking, no known stability issues, and greatly improved MPD client
support. There are lots of changes since 0.1.0a3, and we urge you to at least
read the important changes below.

This release does not support OS X. We’re sorry about that, and are working on
fixing the OS X issues for a future release. You can track the progress at
#14 [https://github.com/mopidy/mopidy/issues/14].

Important changes

	License changed from GPLv2 to Apache License, version 2.0.

	GStreamer is now a required dependency. See our GStreamer installation
docs.

	mopidy.backends.libspotify is now the default backend.
mopidy.backends.despotify is no longer available. This means that you
need to install the dependencies for libspotify.

	If you used mopidy.backends.libspotify previously, pyspotify must be
updated when updating to this release, to get working seek functionality.

	mopidy.settings.SERVER_HOSTNAME and
mopidy.settings.SERVER_PORT has been renamed to
mopidy.settings.MPD_SERVER_HOSTNAME and
mopidy.settings.MPD_SERVER_PORT to allow for multiple frontends in
the future.

Changes

	Exit early if not Python >= 2.6, < 3.

	Validate settings at startup and print useful error messages if the settings
has not been updated or anything is misspelled.

	Add command line option mopidy --list-settings to print the currently
active settings.

	Include Sphinx scripts for building docs, pylintrc, tests and test data in
the packages created by setup.py for i.e. PyPI.

	MPD frontend:

	Search improvements, including support for multi-word search.

	Fixed play "-1" and playid "-1" behaviour when playlist is empty
or when a current track is set.

	Support plchanges "-1" to work better with MPDroid.

	Support pause without arguments to work better with MPDroid.

	Support plchanges, play, consume, random, repeat, and
single without quotes to work better with BitMPC.

	Fixed deletion of the currently playing track from the current playlist,
which crashed several clients.

	Implement seek and seekid.

	Fix playlistfind output so the correct song is played when playing
songs directly from search results in GMPC.

	Fix load so that one can append a playlist to the current playlist, and
make it return the correct error message if the playlist is not found.

	Support for single track repeat added. (Fixes: #4 [https://github.com/mopidy/mopidy/issues/4])

	Relocate from mopidy.mpd to mopidy.frontends.mpd.

	Split gigantic protocol implementation into eleven modules.

	Rename mopidy.frontends.mpd.{serializer => translator} to match naming
in backends.

	Remove setting mopidy.settings.SERVER and
mopidy.settings.FRONTEND in favour of the new
mopidy.settings.FRONTENDS.

	Run MPD server in its own process.

	Backends:

	Rename mopidy.backends.gstreamer to mopidy.backends.local.

	Remove mopidy.backends.despotify, as Despotify is little maintained
and the Libspotify backend is working much better. (Fixes: #9 [https://github.com/mopidy/mopidy/issues/9],
#10 [https://github.com/mopidy/mopidy/issues/10], #13 [https://github.com/mopidy/mopidy/issues/13])

	A Spotify application key is now bundled with the source.
mopidy.settings.SPOTIFY_LIB_APPKEY is thus removed.

	If failing to play a track, playback will skip to the next track.

	Both mopidy.backends.libspotify and mopidy.backends.local
have been rewritten to use the new common GStreamer audio output module,
mopidy.outputs.gstreamer.

	Mixers:

	Added new mopidy.mixers.gstreamer_software.GStreamerSoftwareMixer
which now is the default mixer on all platforms.

	New setting mopidy.settings.MIXER_MAX_VOLUME for capping the
maximum output volume.

	Backend API:

	Relocate from mopidy.backends to mopidy.backends.base.

	The id field of mopidy.models.Track has been removed, as it is
no longer needed after the CPID refactoring.

	mopidy.backends.base.BaseBackend() now accepts an
output_queue which it can use to send messages (i.e. audio data)
to the output process.

	mopidy.backends.base.BaseLibraryController.find_exact() now accepts
keyword arguments of the form find_exact(artist=['foo'],
album=['bar']).

	mopidy.backends.base.BaseLibraryController.search() now accepts
keyword arguments of the form search(artist=['foo', 'fighters'],
album=['bar', 'grooves']).

	mopidy.backends.base.BaseCurrentPlaylistController.append()
replaces
mopidy.backends.base.BaseCurrentPlaylistController.load(). Use
mopidy.backends.base.BaseCurrentPlaylistController.clear() if you
want to clear the current playlist.

	The following fields in
mopidy.backends.base.BasePlaybackController has been renamed to
reflect their relation to methods called on the controller:

	next_track to track_at_next

	next_cp_track to cp_track_at_next

	previous_track to track_at_previous

	previous_cp_track to cp_track_at_previous

	mopidy.backends.base.BasePlaybackController.track_at_eot and
mopidy.backends.base.BasePlaybackController.cp_track_at_eot has
been added to better handle the difference between the user pressing next
and the current track ending.

	Rename
mopidy.backends.base.BasePlaybackController.new_playlist_loaded_callback()
to
mopidy.backends.base.BasePlaybackController.on_current_playlist_change().

	Rename
mopidy.backends.base.BasePlaybackController.end_of_track_callback()
to mopidy.backends.base.BasePlaybackController.on_end_of_track().

	Remove mopidy.backends.base.BaseStoredPlaylistsController.search()
since it was barely used, untested, and we got no use case for non-exact
search in stored playlists yet. Use
mopidy.backends.base.BaseStoredPlaylistsController.get() instead.

v0.1.0a3 (2010-08-03)

In the last two months, Mopidy’s MPD frontend has gotten lots of stability
fixes and error handling improvements, proper support for having the same track
multiple times in a playlist, and support for IPv6. We have also fixed the
choppy playback on the libspotify backend. For the road ahead of us, we got an
updated release roadmap with our goals for the 0.1 to 0.3 releases.

Enjoy the best alpha release of Mopidy ever :-)

Changes

	MPD frontend:

	Support IPv6.

	addid responds properly on errors instead of crashing.

	commands support, which makes RelaXXPlayer work with Mopidy. (Fixes:
#6 [https://github.com/mopidy/mopidy/issues/6])

	Does no longer crash on invalid data, i.e. non-UTF-8 data.

	ACK error messages are now MPD-compliant, which should make clients
handle errors from Mopidy better.

	Requests to existing commands with wrong arguments are no longer reported
as unknown commands.

	command_list_end before command_list_start now returns unknown
command error instead of crashing.

	list accepts field argument without quotes and capitalized, to work
with GMPC and ncmpc.

	noidle command now returns OK instead of an error. Should make some
clients work a bit better.

	Having multiple identical tracks in a playlist is now working properly.
(CPID refactoring)

	Despotify backend:

	Catch and log spytify.SpytifyError. (Fixes: #11 [https://github.com/mopidy/mopidy/issues/11])

	Libspotify backend:

	Fix choppy playback using the Libspotify backend by using blocking ALSA
mode. (Fixes: #7 [https://github.com/mopidy/mopidy/issues/7])

	Backend API:

	A new data structure called cp_track is now used in the current
playlist controller and the playback controller. A cp_track is a
two-tuple of (CPID integer, mopidy.models.Track), identifying an
instance of a track uniquely within the current playlist.

	mopidy.backends.BaseCurrentPlaylistController.load() now accepts
lists of mopidy.models.Track instead of
mopidy.models.Playlist, as none of the other fields on the
Playlist model was in use.

	mopidy.backends.BaseCurrentPlaylistController.add() now returns the
cp_track added to the current playlist.

	mopidy.backends.BaseCurrentPlaylistController.remove() now takes
criterias, just like
mopidy.backends.BaseCurrentPlaylistController.get().

	mopidy.backends.BaseCurrentPlaylistController.get() now returns a
cp_track.

	mopidy.backends.BaseCurrentPlaylistController.tracks is now
read-only. Use the methods to change its contents.

	mopidy.backends.BaseCurrentPlaylistController.cp_tracks is a
read-only list of cp_track. Use the methods to change its contents.

	mopidy.backends.BasePlaybackController.current_track is now
just for convenience and read-only. To set the current track, assign a
cp_track to
mopidy.backends.BasePlaybackController.current_cp_track.

	mopidy.backends.BasePlaybackController.current_cpid is the
read-only CPID of the current track.

	mopidy.backends.BasePlaybackController.next_cp_track is the
next cp_track in the playlist.

	mopidy.backends.BasePlaybackController.previous_cp_track is
the previous cp_track in the playlist.

	mopidy.backends.BasePlaybackController.play() now takes a
cp_track.

v0.1.0a2 (2010-06-02)

It has been a rather slow month for Mopidy, but we would like to keep up with
the established pace of at least a release per month.

Changes

	Improvements to MPD protocol handling, making Mopidy work much better with a
group of clients, including ncmpc, MPoD, and Theremin.

	New command line flag mopidy --dump for dumping debug log to dump.log
in the current directory.

	New setting mopidy.settings.MIXER_ALSA_CONTROL for forcing what ALSA
control mopidy.mixers.alsa.AlsaMixer should use.

v0.1.0a1 (2010-05-04)

Since the previous release Mopidy has seen about 300 commits, more than 200 new
tests, a libspotify release, and major feature additions to Spotify. The new
releases from Spotify have lead to updates to our dependencies, and also to new
bugs in Mopidy. Thus, this is primarily a bugfix release, even though the not
yet finished work on a GStreamer backend have been merged.

All users are recommended to upgrade to 0.1.0a1, and should at the same time
ensure that they have the latest versions of our dependencies: Despotify r508
if you are using DespotifyBackend, and pyspotify 1.1 with libspotify 0.0.4 if
you are using LibspotifyBackend.

As always, report problems at our IRC channel or our issue tracker. Thanks!

Changes

	Backend API changes:

	Removed backend.playback.volume wrapper. Use backend.mixer.volume
directly.

	Renamed backend.playback.playlist_position to
current_playlist_position to match naming of current_track.

	Replaced get_by_id() with a more flexible get(**criteria).

	Merged the gstreamer branch from Thomas Adamcik:

	More than 200 new tests, and thus several bug fixes to existing code.

	Several new generic features, like shuffle, consume, and playlist repeat.
(Fixes: #3 [https://github.com/mopidy/mopidy/issues/3])

	[Work in Progress] A new backend for playing music from a local music
archive using the GStreamer library.

	Made mopidy.mixers.alsa.AlsaMixer work on machines without a mixer
named “Master”.

	Make mopidy.backends.DespotifyBackend ignore local files in
playlists (feature added in Spotify 0.4.3). Reported by Richard Haugen Olsen.

	And much more.

v0.1.0a0 (2010-03-27)

“Release early. Release often. Listen to your customers.” wrote Eric S.
Raymond in The Cathedral and the Bazaar.

Three months of development should be more than enough. We have more to do, but
Mopidy is working and usable. 0.1.0a0 is an alpha release, which basically means
we will still change APIs, add features, etc. before the final 0.1.0 release.
But the software is usable as is, so we release it. Please give it a try and
give us feedback, either at our IRC channel or through the issue tracker [https://github.com/mopidy/mopidy/issues]. Thanks!

Changes

	Initial version. No changelog available.

Versioning

Mopidy follows Semantic Versioning [https://semver.org/]. In summary this
means that our version numbers have three parts, MAJOR.MINOR.PATCH, which
change according to the following rules:

	When we make incompatible API changes, we increase the MAJOR number.

	When we add features in a backwards-compatible manner, we increase the
MINOR number.

	When we fix bugs in a backwards-compatible manner, we increase the PATCH
number.

The promise is that if you make a Mopidy extension for Mopidy 1.0, it should
work unchanged with any Mopidy 1.x release, but probably not with 2.0. When a
new major version is released, you must review the incompatible changes and
update your extension accordingly.

Release schedule

We intend to have about one feature release every month in periods of active
development. The features added is a mix of what we feel is most
important/requested of the missing features, and features we develop just
because we find them fun to make, even though they may be useful for very few
users or for a limited use case.

Bugfix releases will be released whenever we discover bugs that are too serious
to wait for the next feature release. We will only release bugfix releases for
the last feature release. E.g. when 1.2.0 is released, we will no longer
provide bugfix releases for the 1.1.x series. In other words, there will be just
a single supported release at any point in time. This is to not spread our
limited resources too thin.

Authors

Mopidy is copyright 2009-2024 Stein Magnus Jodal and contributors. Mopidy is
licensed under the Apache License, Version 2.0 [http://www.apache.org/licenses/LICENSE-2.0].

The following persons have contributed to Mopidy. The list is in the order of
first contribution. For details on who have contributed what, please refer to
our Git repository.

	Stein Magnus Jodal <stein.magnus@jodal.no>

	Johannes Knutsen <johannes@knutseninfo.no>

	Thomas Adamcik <thomas@adamcik.no>

	Kristian Klette <klette@samfundet.no>

	Martins Grunskis <martins@grunskis.com>

	Henrik Olsson <henrik@fixme.se>

	Antoine Pierlot-Garcin <antoine@bokbox.com>

	John Bäckstrand <sopues@gmail.com>

	Fred Hatfull <fred.hatfull@gmail.com>

	Erling Børresen <erling@fenicore.net>

	David Caruso <deibido.caruso@gmail.com>

	Christian Johansen <christian@cjohansen.no>

	Matt Bray <mattjbray@gmail.com>

	Trygve Aaberge <trygveaa@gmail.com>

	Wouter van Wijk <woutervanwijk@gmail.com>

	Jeremy B. Merrill <jeremybmerrill@gmail.com>

	Adam Rigg <adam@adamrigg.id.au>

	Ernst Bammer <herr.ernst@gmail.com>

	Nick Steel <nick@nsteel.co.uk>

	Zan Dobersek <zandobersek@gmail.com>

	Thomas Refis <refis.thomas@gmail.com>

	Janez Troha <janez.troha@gmail.com>

	Tobias Sauerwein <cgtobi@gmail.com>

	Alli Witheford <alzeih@gmail.com>

	Alexandre Petitjean <alpetitjean@gmail.com>

	Terje Larsen <terlar@gmail.com>

	Javier Domingo Cansino <javierdo1@gmail.com>

	Pavol Babincak <scroolik@gmail.com>

	Javier Domingo <javierdo1@gmail.com>

	Lasse Bigum <lasse@bigum.org>

	David Eisner <david.eisner@oriel.oxon.org>

	Pål Ruud <ruudud@gmail.com>

	Thomas Kemmer <tkemmer@computer.org>

	Paul Connolley <paul.connolley@gmail.com>

	Luke Giuliani <luke@giuliani.com.au>

	Colin Montgomerie <kiteflyingmonkey@gmail.com>

	Simon de Bakker <simon@simbits.nl>

	Arnaud Barisain-Monrose <abarisain@gmail.com>

	Nathan Harper <nathan.sam.harper@gmail.com>

	Pierpaolo Frasa <pfrasa@smail.uni-koeln.de>

	Thomas Scholtes <thomas-scholtes@gmx.de>

	Sam Willcocks <sam@wlcx.cc>

	Ignasi Fosch <natx@y10k.ws>

	Arjun Naik <arjun@arjunnaik.in>

	Christopher Schirner <christopher@hackerspace-bamberg.de>

	Dmitry Sandalov <dmitry@sandalov.org>

	Lukas Vogel <lukas@vogelnest.org>

	Thomas Amland <thomas.amland@gmail.com>

	Deni Bertovic <deni@kset.org>

	Ali Ukani <ali.ukani@gmail.com>

	Dirk Groenen <dirk_groenen@live.nl>

	John Cass <john.cass77@gmail.com>

	Laura Barber <laura.c.barber@gmail.com>

	Jakab Kristóf <jaksi07c8@gmail.com>

	Ronald Zielaznicki <zielaznickizm@g.cofc.edu>

	Wojciech Wnętrzak <w.wnetrzak@gmail.com>

	Camilo Nova <camilo.nova@gmail.com>

	Dražen Lučanin <kermit666@gmail.com>

	Naglis Jonaitis <njonaitis@gmail.com>

	Kyle Heyne <kyleheyne@gmail.com>

	Tom Roth <rawdlite@googlemail.com>

	Mark Greenwood <fatgerman@gmail.com>

	Stein Karlsen <karlsen.stein@gmail.com>

	Dejan Prokić <dejanp@nordeus.eu>

	Eric Jahn <ejahn@newstore.com>

	Mikhail Golubev <qsolo825@gmail.com>

	Danilo Bargen <mail@dbrgn.ch>

	Bjørnar Snoksrud <bjornar@snoksrud.no>

	Giorgos Logiotatidis <seadog@sealabs.net>

	Ben Evans <ben@bensbit.co.uk>

	vrs01 <vrs01@users.noreply.github.com>

	Cadel Watson <cadel@cadelwatson.com>

	Loïck Bonniot <git@lesterpig.com>

	Gustaf Hallberg <ghallberg@gmail.com>

	kozec <kozec@kozec.com>

	Jelle van der Waa <jelle@vdwaa.nl>

	Alex Malone <jalexmalone@gmail.com>

	Daniel Hahler <git@thequod.de>

	Bryan Bennett <bbenne10@gmail.com>

	Jens Lütjen <dublok@users.noreply.github.com>

	Lina He <linahe93@gmail.com>

	Daniel T <thomas_d_j@yahoo.com.au>

	Lars Kruse <devel@sumpfralle.de>

	Benjamin Chrétien <chretien.b@gmail.com>

	SeppSTA <s.staats@gmx.de>

	Ismael Asensio <ismailof@github.com>

	Tom Parker <palfrey@tevp.net>

	Nantas Nardelli <nantas.nardelli@gmail.com>

	Naglis Jonaitis <naglis@mailbox.org>

	Alexander Jaworowski <alexander@jaworowski.se>

	Don Armstrong <don@donarmstrong.com>

	Nadav Tau <nadavt@sedonasys.com>

	Aleksandar Benic <aleksandar.benic@protonmail.com>

	Tom Swirly <tom@swirly.com>

	Piotr Dobrowolski <Informatic@users.noreply.github.com>

	Tomas Susanka <tsusanka@gmail.com>

	James Barnsley <james@barnsley.nz>

	Caysho <caysho@internode.on.net>

	Brendan Jones <btjones711@gmail.com>

	Marvin Preuss <marvin@xsteadfastx.org>

	Bernhard Gehl <bernhard.gehl@gmail.com>

	CL123123 <clairclair628@gmail.com>

	Piotr Dobrowolski <admin@tastycode.pl>

	Nick Aquina <nickaquina@gmail.com>

	Marcus Götling <marcus@gotling.se>

	Dominique Tardif <dommtardif@users.noreply.github.com>

	Alexey Murz Korepov <murznn@gmail.com>

	Jarryd Tilbrook <jrad.tilbrook@gmail.com>

	Dan Brough <dan@danbrough.org>

	Jonathan Jefferies <jjok@users.noreply.github.com>

	Matthieu Melquiond <matt.llvw@gmail.com>

	Damien Cassou <damien@cassou.me>

	Leonid Bogdanov <leonid_bogdanov@mail.ru>

	Geoffroy Youri Berret <kaliko@azylum.org>

	Dan Stowell <danstowell@users.sourceforge.net>

	Gildas Le Nadan <gildas@endemic-systems.com>

	Zvonimir Fras <zvonimir@zvonimirfras.com>

	Simon <schaefer@fidion.de>

	Vivien Henry <vivien.henry@outlook.fr>

	Hugo van Kemenade <hugovk@users.noreply.github.com>

	Tobias Girstmair <girst@users.noreply.github.com>

	Jakub Fijałkowski <kuba@codinginfinity.me>

	Jonathan Jefferies <jonathan@jjok.co.uk>

	Prajjwal Nijhara <prajjwalnijhara@gmail.com>

	Asmi Jafar <47150162+asmijafar20@users.noreply.github.com>

	Saloni Gupta <60188408+salonigupta1@users.noreply.github.com>

	Parth Verma <v.parth98@gmail.com>

	Matthew H. Flamm <matthewhflamm@gmail.com>

	Matthew Gamble <git@matthewgamble.net>

	Keith Scroggs <very-amused@pm.me>

	Andrzej Rybczak <arybczak@users.noreply.github.com>

	Tim Gates <tim.gates@iress.com>

	Davis Mosenkovs <davikovs@gmail.com>

	Jonathan <github@jhacker.de>

	Kunal Attri <attrikunal16@gmail.com>

	Archish Thakkar <archishthakkar@gmail.com>

	grdorin <94456679+grdorin@users.noreply.github.com>

	solo <solonovamax@12oclockpoint.com>

	lmdc45 <47163513+lmdc45@users.noreply.github.com>

	Matthias Meulien <orontee@gmail.com>

	Jan Iversen <jancasacondor@gmail.com>

	SandeshPyakurel <85491057+SandeshPyakurel@users.noreply.github.com>

	ayushrakesh <115995339+ayushrakesh@users.noreply.github.com>

If want to help us making Mopidy better, the best way to do so is to contribute
back to the community, either through code, documentation, tests, bug reports,
or by helping other users, spreading the word, etc. See Contributing for
a head start.

Sponsors

The Mopidy project would like to thank the following sponsors for supporting
the project.

Discourse

Discourse [https://www.discourse.org/] sponsors Mopidy with free hosting of
our discussion forum at https://discourse.mopidy.com.

Zulip

Zulip [https://zulip.com/] sponsors Mopidy with free hosting of our chat app
at https://mopidy.zulipchat.com.

Contributing

If you want to contribute to Mopidy, here are some tips to get you started.

Asking questions

Please get in touch with us in one of these ways when requesting help with
Mopidy and its extensions:

	Our Discourse forum: discourse.mopidy.com [https://discourse.mopidy.com].

	The #mopidy-users stream on Zulip chat: mopidy.zulipchat.com [https://mopidy.zulipchat.com].

Before asking for help, it might be worth your time to read the
Troubleshooting page, both so you might find a solution to your problem
but also to be able to provide useful details when asking for help.

Helping users

If you want to contribute to Mopidy, a great place to start is by helping other
users in the discussion forum and the #mopidy-users Zulip stream. This is a
contribution we value highly. As more people help with user support, new users
get faster and better help. For your own benefit, you’ll quickly learn what
users find confusing, difficult or lacking, giving you some ideas for where you
may contribute improvements, either to code or documentation. Lastly, this may
also free up time for other contributors to spend more time on fixing bugs or
implementing new features.

Issue guidelines

	If you need help, see Asking questions above. The GitHub issue
tracker is not a support forum.

	If you are not sure if what you’re experiencing is a bug or not, post in the
discussion forum [https://discourse.mopidy.com] first to verify that
it’s a bug.

	If you are sure that you’ve found a bug or have a feature request, check if
there’s already an issue in the issue tracker [https://github.com/mopidy/mopidy/issues]. If there is, see if there is
anything you can add to help reproduce or fix the issue.

	If there is no exising issue matching your bug or feature request, create a
new issue [https://github.com/mopidy/mopidy/issues/new]. Please include
as much relevant information as possible. If it’s a bug, including how to
reproduce the bug and any relevant logs or error messages.

Pull request guidelines

	Before spending any time on making a pull request:

	If it’s a bug, file an issue.

	If it’s an enhancement, discuss it with other Mopidy developers first,
either in a GitHub issue, on the discussion forum, or on Zulip chat.
Making sure your ideas and solutions are aligned with other contributors
greatly increases the odds of your pull request being quickly accepted.

	Create a new branch, based on the main branch, for every feature or
bug fix. Keep branches small and on topic, as that makes them far easier to
review.

	Follow the code style, especially make sure the
ruff linter does not complain about anything. Our CI setup will
check that your pull request is “ruff clean”. See Style checking and linting.

	Include tests for any new feature or substantial bug fix. See
Running tests.

	Include documentation for any new feature. See Writing documentation.

	Feel free to include a changelog entry in your pull request. The changelog
is in docs/changelog.rst.

	Write good commit messages.

	Follow the template “topic: description” for the first line of the commit
message, e.g. “mpd: Switch list command to using list_distinct”. See the
commit history for inspiration.

	Use the rest of the commit message to explain anything you feel isn’t
obvious. It’s better to have the details here than in the pull request
description, since the commit message will live forever.

	Write in the imperative, present tense: “add” not “added”.

For more inspiration, feel free to read these blog posts:

	Writing Git commit messages [https://365git.tumblr.com/post/3308646748/writing-git-commit-messages]

	A Note About Git Commit Messages [https://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html]

	On commit messages [https://who-t.blogspot.com/2009/12/on-commit-messages.html]

	Send a pull request to the main branch. See the GitHub pull request
docs [https://help.github.com/en/articles/about-pull-requests] for help.

Development environment

This page describes a common development setup for working with Mopidy and
Mopidy extensions. Of course, there may be other ways that work better for you
and the tools you use, but here’s one recommended way to do it.

	Initial setup

	Install Mopidy the regular way

	Make a development workspace

	Make a virtualenv

	Clone the repo from GitHub

	Install Mopidy from the Git repo

	Install development tools

	Running Mopidy from Git

	Running tests

	Test it all

	Running unit tests

	Continuous integration

	Style checking and linting

	Writing documentation

	Working on extensions

	Installing extensions

	Upgrading extensions

	Contribution workflow

	Setting up Git remotes

	Creating a branch

	Creating a pull request

	Updating a pull request

Initial setup

The following steps help you get a good initial setup. They build on each other
to some degree, so if you’re not very familiar with Python development it might
be wise to proceed in the order laid out here.

	Install Mopidy the regular way

	Make a development workspace

	Make a virtualenv

	Clone the repo from GitHub

	Install Mopidy from the Git repo

	Install development tools

Install Mopidy the regular way

Install Mopidy the regular way. Mopidy has some non-Python dependencies which
may be tricky to install. Thus we recommend to always start with a full regular
Mopidy install, as described in Installation. That is, if you’re running
e.g. Debian, start with installing Mopidy from Debian packages.

Make a development workspace

Make a directory to be used as a workspace for all your Mopidy development:

mkdir ~/mopidy-dev

It will contain all the Git repositories you’ll check out when working on
Mopidy and extensions.

Make a virtualenv

Make a Python virtualenv for Mopidy development.
The virtualenv will wall off Mopidy and its dependencies from the rest of your system.
All development and installation of Python dependencies,
versions of Mopidy, and extensions are done inside the virtualenv.
This way your regular Mopidy install,
which you set up in the first step,
is unaffected by your hacking and will always be working.

To create a virtualenv in the Mopidy workspace directory, run:

python3 -m venv ~/mopidy-dev/.venv

Now, each time you open a terminal and want to activate the mopidy
virtualenv, run:

. ~/mopidy-dev/.venv/bin/activate

There are lots of ways to set up your shell to automatically activate the virtualenv,
e.g. when changing directory into ~/mopidy-dev/ or a subdirectory.
As this is just convenience and not strictly required,
it is left as an exercise for the reader.

Clone the repo from GitHub

Once inside the virtualenv, it’s time to clone the mopidy/mopidy Git repo
from GitHub:

cd ~/mopidy-dev/
git clone https://github.com/mopidy/mopidy.git

When you’ve cloned the mopidy Git repo, cd into it:

cd ~/mopidy-dev/mopidy/

With a fresh clone of the Git repo, you should start out on the main
branch. This is where all features for the next feature release land. To
confirm that you’re on the right branch, run:

git branch

Install Mopidy from the Git repo

Next up, we’ll want to run Mopidy from the Git repo. There’s two reasons for
this: first of all, it lets you easily change the source code, restart Mopidy,
and see the change take effect. Second, it’s a convenient way to keep at the
bleeding edge, testing the latest developments in Mopidy itself or test some
extension against the latest Mopidy changes.

Assuming you’re still inside the Git repo, use pip to install Mopidy from the
Git repo in an “editable” form:

pip install --upgrade --editable .

When using the --editable flag, the source code is not copied into the
virtualenv’s site-packages directory, but instead creates a link there
pointing to the Git repo. This way, you can change the source code in the Git
repo and the changes will be visible inside the virtualenv without having to
reinstall Mopidy.

It will also create a mopidy executable inside the virtualenv that will
always run the latest code from the Git repo:

$ cat ~/mopidy-dev/.venv/bin/mopidy
...

This file is on the path when the virtualenv is active, so you can run it from
anywhere, simply by running:

mopidy

Note

It is also possible to run Python apps directly,
e.g. using python3 src/mopidy directly on the
~/mopidy-dev/mopidy/src/mopidy/ Python package directory.
However, if you don’t run the install command above,
the extensions bundled with Mopidy will not be registered and made available
for use, making Mopidy quite useless.

Third, the install command will register the bundled Mopidy
extensions so that Mopidy may find them through importlib [https://docs.python.org/3/library/importlib.html#module-importlib].
The result of this can be seen in a file named entry_points.txt
which can be found inside the virtualenv dir, e.g.
~/mopidy-dev/.venv/lib/python3.11/site-packages/Mopidy-4.0.0.dist-info/entry_points.txt.
The entry_points.txt file is of special interest as it shows both how
the above executable and the bundled extensions are connected to the Mopidy
source code:

[console_scripts]
mopidy = mopidy.__main__:main

[mopidy.ext]
file = mopidy.file:Extension
http = mopidy.http:Extension
m3u = mopidy.m3u:Extension
softwaremixer = mopidy.softwaremixer:Extension
stream = mopidy.stream:Extension

Install development tools

Before continuing, you will probably want to install the development tools we
use as well. These can be installed into the active virtualenv by running:

cd ~/mopidy-dev/mopidy/
pip install --upgrade --editable ".[dev]"

Note that this is the same command as you used to install Mopidy from the Git
repo, with the addition of the [dev] suffix after .. This makes pip
install the “dev” set of extra dependencies. Exactly what the “dev” set
includes are defined in pyproject.toml.

To upgrade the development tools in the future, just rerun the exact same
command.

Running Mopidy from Git

As long as the virtualenv is activated, you can start Mopidy from any
directory. Simply run:

mopidy

To stop it again, press Ctrl+C.

Every time you change code in Mopidy or an extension and want to see it
live, you must restart Mopidy.

If you want to iterate quickly while developing, it may sound a bit tedious to
restart Mopidy for every minor change. Then it’s useful to have tests to
exercise your code…

Running tests

Mopidy has quite good test coverage, and we would like all new code going into
Mopidy to come with tests.

	Test it all

	Running unit tests

	Continuous integration

	Style checking and linting

Test it all

You need to know at least one command; the one that runs all the tests:

tox

This will run exactly the same tests as our CI setup runs for all our
branches and pull requests. If this command turns green, you can be quite
confident that your pull request will get the green flag from CI as well,
which is a requirement for it to be merged.

As this is the ultimate test command, it’s also the one taking the most time to
run; up to a minute, depending on your system. But, if you have patience, this
is all you need to know. Always run this command before pushing your changes to
GitHub.

If you take a look at the tox config file, tox.ini, you’ll see that tox
runs tests in multiple environments, including a ruff environment that
lints the source code for issues and a docs environment that tests that the
documentation can be built. You can also limit tox to just test specific
environments using the -e option, e.g. to run just unit tests on Python 3.11:

tox -e py311

To learn more, see the tox documentation [https://tox.readthedocs.io/] .

Before submitting a pull request, we recommend running:

tox -e ci

This will locally run similar tests to what we use in our CI runs and help us to
merge high-quality contributions.

Running unit tests

Under the hood, tox -e py311 will use pytest [https://docs.pytest.org/]
as the test runner. We can also use it directly to run all tests:

pytest

pytest has lots of possibilities, so you’ll have to dive into their docs and
plugins to get full benefit from it. To get you interested, here are some
examples.

We can limit to just tests in a single directory to save time:

pytest tests/http/

With the help of the pytest-xdist plugin, we can run tests with four Python
processes in parallel, which usually cuts the test time in half or more:

pytest -n 4

Another useful feature from pytest-xdist, is the possibility to stop on the
first test failure, watch the file system for changes, and then rerun the
tests. This makes for a very quick code-test cycle:

pytest -f # or --looponfail

With the help of the pytest-cov plugin, we can get a report on what parts of
the given module, mopidy in this example, are covered by the test suite:

pytest --cov=mopidy --cov-report=term-missing

Note

Up to date test coverage statistics can also be viewed online at
Codecov [https://codecov.io/gh/mopidy/mopidy].

If we want to speed up the test suite, we can even get a list of the ten
slowest tests:

pytest --durations=10

By now, you should be convinced that running pytest directly during
development can be very useful.

Continuous integration

Mopidy uses GitHub Actions [https://github.com/mopidy/mopidy/actions] for
automatically running the test suite when code is pushed to GitHub. This
works both for the main Mopidy repo, but also for any forks. This way, any
contributions to Mopidy through GitHub will automatically be tested, and the
build status will be visible in the GitHub pull request interface, making it
easier to evaluate the quality of pull requests.

For each successful build, the CI setup submits code coverage data to
Codecov [https://codecov.io/gh/mopidy/mopidy]. If you’re out of work, Codecov might help you find areas in the
code which could need better test coverage.

Style checking and linting

We’re quite pedantic about Code style and try hard to keep the Mopidy
code base a very clean and nice place to work in.

Luckily, you can get very far by using the ruff [https://github.com/astral-sh/ruff] linter to check your code for issues before
submitting a pull request. Mopidy’s ruff rules are configured in pyproject.toml.
You can either run the ruff tox environment, like our CI setup will do on
your pull request:

tox -e ruff

Or you can run ruff directly:

ruff .

If successful, the command will not print anything at all.

Note

In some rare cases it doesn’t make sense to listen to ruff’s warnings. In
those cases, ignore the check by appending # noqa: <warning code> to
the source line that triggers the warning. The # noqa part will make
ruff skip all checks on the line, while the warning code will help other
developers lookup what you are ignoring.

Writing documentation

To write documentation, we use Sphinx [https://www.sphinx-doc.org/]. See
their site for lots of documentation on how to use Sphinx.

Note

To generate a few graphs which are part of the documentation, you need to
install the graphviz package. You can install it from APT with:

sudo apt install graphviz

Other distributions typically use the same package name.

To build the documentation, go into the docs/ directory:

cd ~/mopidy-dev/mopidy/docs/

Then, to see all available build targets, run:

make

To generate an HTML version of the documentation, run:

make html

The generated HTML will be available at _build/html/index.html. To open
it in a browser you can run either of the following commands, depending on your
OS:

xdg-open _build/html/index.html # Linux
open _build/html/index.html # OS X

The documentation at https://docs.mopidy.com/ is hosted by Read the Docs [https://readthedocs.org/], which automatically updates the documentation
when a change is pushed to the mopidy/mopidy repo at GitHub.

Working on extensions

Much of the above also applies to Mopidy extensions, though they’re often a bit
simpler. They don’t have documentation sites and their test suites are either
small and fast, or sadly missing entirely. Most of them use tox to run various
linters, and pytest can be used to run their test suites.

	Installing extensions

	Upgrading extensions

Installing extensions

As always, the mopidy virtualenv should be active when working on
extensions:

. ~/mopidy-dev/.venv/bin/activate

Just like with non-development Mopidy installations, you can install extensions
using pip:

pip install Mopidy-Scrobbler

Installing an extension from its Git repo works the same way as with Mopidy
itself. First, go to the Mopidy workspace:

cd ~/mopidy-dev/

Clone the desired Mopidy extension:

git clone https://github.com/mopidy/mopidy-spotify.git

Change to the newly created extension directory:

cd ~/mopidy-dev/mopidy-spotify/

Then, install the extension in “editable” mode, so that it can be imported from
anywhere inside the virtualenv and the extension is registered and discoverable
through importlib [https://docs.python.org/3/library/importlib.html#module-importlib]:

pip install --editable .

Every extension will have a README.rst file. It may contain information
about extra dependencies required, development process, etc. Extensions usually
have a changelog in their GitHub relases page.

Upgrading extensions

Extensions often have a much quicker life cycle than Mopidy itself, often with
daily releases in periods of active development. To find outdated extensions in
your virtualenv, you can run:

pip list --outdated

To upgrade an extension installed with pip, simply use pip:

pip install --upgrade Mopidy-Scrobbler

To upgrade an extension installed from a Git repo, it’s usually enough to pull
the new changes in:

cd ~/mopidy-dev/mopidy-spotify/
git pull

Of course, if you have local modifications, you’ll need to stash these away on
a branch or similar first.

Depending on the changes to the extension, it may be necessary to update the
metadata about the extension package by installing it in “editable” mode
again:

pip install --editable .

Contribution workflow

Before you being, make sure you’ve read the Contributing page and the
guidelines there. This section will focus more on the practical workflow.

For the examples, we’re making a change to Mopidy. Approximately the same
workflow should work for most Mopidy extensions too.

	Setting up Git remotes

	Creating a branch

	Creating a pull request

	Updating a pull request

Setting up Git remotes

Assuming we already have a local Git clone of the upstream Git repo in
~/mopidy-dev/mopidy/, we can run git remote -v to list the
configured remotes of the repo:

$ git remote -v
origin https://github.com/mopidy/mopidy.git (fetch)
origin https://github.com/mopidy/mopidy.git (push)

For clarity, we can rename the origin remote to upstream:

$ git remote rename origin upstream
$ git remote -v
upstream https://github.com/mopidy/mopidy.git (fetch)
upstream https://github.com/mopidy/mopidy.git (push)

If you haven’t already, fork the repository [https://help.github.com/en/articles/fork-a-repo] to your own GitHub account.

Then, add the new fork as a remote to your local clone:

git remote add myuser git@github.com:myuser/mopidy.git

The end result is that you have both the upstream repo and your own fork as
remotes:

$ git remote -v
myuser git@github.com:myuser/mopidy.git (fetch)
myuser git@github.com:myuser/mopidy.git (push)
upstream https://github.com/mopidy/mopidy.git (fetch)
upstream https://github.com/mopidy/mopidy.git (push)

Creating a branch

Fetch the latest data from all remotes without affecting your working
directory:

git remote update --prune

Now, we are ready to create and checkout a new branch off of the upstream
main branch for our work:

git checkout -b fix-crash-on-foo upstream/main

Do the work, while remembering to adhere to code style, test the changes, make
necessary updates to the documentation, and making small commits with good
commit messages. All as described in Contributing and elsewhere in
the Development environment guide.

Creating a pull request

When everything is done and committed, push the branch to your fork on GitHub:

git push myuser fix-crash-on-foo

Go to the repository on GitHub where you want the change merged, in this case
https://github.com/mopidy/mopidy, and create a pull request [https://help.github.com/en/articles/creating-a-pull-request].

Updating a pull request

When the pull request is created, our CI setup will run all tests on it.
If something fails, you’ll usually get a notification from GitHub.
You might as well just fix the issues right away,
as we won’t merge a pull request without all CI builds being green.
See Running tests on how to run the same tests locally as
our CI setup runs on your pull request.

When you’ve fixed the issues, you can update the pull request simply by pushing
more commits to the same branch in your fork:

git push myuser fix-crash-on-foo

Likewise, when you get review comments from other developers on your pull
request, you’re expected to create additional commits which addresses the
comments. Push them to your branch so that the pull request is updated.

Extension development

Mopidy started as simply an MPD server that could play music from Spotify.
Early on, Mopidy got multiple “frontends” to expose Mopidy to more than just MPD
clients: for example the scrobbler frontend that scrobbles your listening
history to your Last.fm account, the MPRIS frontend that integrates Mopidy into the
Ubuntu Sound Menu, and the HTTP server and JavaScript player API making web
based Mopidy clients possible. In Mopidy 0.9 we added support for multiple
music sources without stopping and reconfiguring Mopidy: for example the local
backend for playing music from your disk, the stream backend for playing
Internet radio streams, and the Spotify and SoundCloud backends, for playing
music directly from those services.

All of these are examples of what you can accomplish by creating a Mopidy
extension. If you want to create your own Mopidy extension for something that
does not exist yet, this guide to extension development will help you get your
extension running in no time, and make it feel the way users would expect your
extension to behave.

Anatomy of an extension

Extensions are located in a Python package called mopidy_something where
“something” is the name of the application, library or web service you want to
integrate with Mopidy. So, for example, if you plan to add support for a service
named Soundspot to Mopidy, you would name your extension’s Python package
mopidy_soundspot.

The extension must be shipped with a setup.py file and be registered on
PyPI [https://pypi.org/]. The name of the distribution on PyPI would
be something like “Mopidy-Soundspot”. Make sure to include the name “Mopidy”
somewhere in that name and that you check the capitalization. This is the name
users will use when they install your extension from PyPI.

Mopidy extensions must be licensed under an Apache 2.0 (like Mopidy itself),
BSD, MIT or more liberal license to be able to be enlisted in the Mopidy
documentation. The license text should be included in the LICENSE file in
the root of the extension’s Git repo.

Combining this together, we get the following folder structure for our
extension, Mopidy-Soundspot:

mopidy-soundspot/ # The Git repo root
 LICENSE # The license text
 MANIFEST.in # List of data files to include in PyPI package
 README.rst # Document what it is and how to use it
 mopidy_soundspot/ # Your code
 __init__.py
 ext.conf # Default config for the extension
 ...
 setup.py # Installation script

Example content for the most important files follows below.

cookiecutter project template

We’ve also made a cookiecutter [https://cookiecutter.readthedocs.io/]
project template for creating new Mopidy extensions [https://github.com/mopidy/cookiecutter-mopidy-ext]. If you install
cookiecutter and run a single command, you’re asked a few questions about the
name of your extension, etc. This is used to create a folder structure similar
to the above, with all the needed files and most of the details filled in for
you. This saves you a lot of tedious work and copy-pasting from this howto. See
the readme of cookiecutter-mopidy-ext [https://github.com/mopidy/cookiecutter-mopidy-ext] for further details.

Example README.rst

The README file should quickly explain what the extension does, how to install
it, and how to configure it. It should also contain a link to a tarball of the
latest development version of the extension. It’s important that this link ends
with #egg=Mopidy-Something-dev for installation using
pip install Mopidy-Something==dev to work.

Mopidy-Soundspot

`Mopidy <https://mopidy.com/>`_ extension for playing music from
`Soundspot <http://soundspot.example.com/>`_.

Requires a Soundspot Platina subscription and the pysoundspot library.

Installation
============

Install by running::

 sudo pip install Mopidy-Soundspot

Or, if available, install the Debian/Ubuntu package from `apt.mopidy.com
<https://apt.mopidy.com/>`_.

Configuration
=============

Before starting Mopidy, you must add your Soundspot username and password
to the Mopidy configuration file::

 [soundspot]
 username = alice
 password = secret

Project resources
=================

- `Source code <https://github.com/mopidy/mopidy-soundspot>`_
- `Issue tracker <https://github.com/mopidy/mopidy-soundspot/issues>`_
- `Development branch tarball <https://github.com/mopidy/mopidy-soundspot/tarball/master#egg=Mopidy-Soundspot-dev>`_

Changelog
=========

v0.1.0 (2013-09-17)

- Initial release.

Example setup.py

The setup.py file must use setuptools, and not distutils. This is because
Mopidy extensions use setuptools’ entry point functionality to register
themselves as available Mopidy extensions when they are installed on your
system.

The example below also includes a couple of convenient tricks for reading the
package version from the source code so that it is defined in a single place,
and to reuse the README file as the long description of the package for the
PyPI registration.

The package must have install_requires on setuptools and Mopidy >=
0.14 (or a newer version, if your extension requires it), in addition to any
other dependencies required by your extension. If you implement a Mopidy
frontend or backend, you’ll need to include Pykka >= 1.1 in the
requirements. The entry_points part must be included. The mopidy.ext
part cannot be changed, but the innermost string should be changed. It’s format
is ext_name = package_name:Extension. ext_name should be a short name
for your extension, typically the part after “Mopidy-” in lowercase. This name
is used e.g. to name the config section for your extension. The
package_name:Extension part is simply the Python path to the extension
class that will connect the rest of the dots.

import re
from setuptools import setup, find_packages

def get_version(filename):
 content = open(filename).read()
 metadata = dict(re.findall("__([a-z]+)__ = '([^']+)'", content))
 return metadata['version']

setup(
 name='Mopidy-Soundspot',
 version=get_version('mopidy_soundspot/__init__.py'),
 url='https://github.com/your-account/mopidy-soundspot',
 license='Apache License, Version 2.0',
 author='Your Name',
 author_email='your-email@example.com',
 description='Very short description',
 long_description=open('README.rst').read(),
 packages=find_packages(exclude=['tests', 'tests.*']),
 zip_safe=False,
 include_package_data=True,
 install_requires=[
 'setuptools',
 'Mopidy >= 0.14',
 'Pykka >= 1.1',
 'pysoundspot',
],
 entry_points={
 'mopidy.ext': [
 'soundspot = mopidy_soundspot:Extension',
],
 },
 classifiers=[
 'Environment :: No Input/Output (Daemon)',
 'Intended Audience :: End Users/Desktop',
 'License :: OSI Approved :: Apache Software License',
 'Operating System :: OS Independent',
 'Programming Language :: Python :: 2',
 'Topic :: Multimedia :: Sound/Audio :: Players',
],
)

To make sure your README, license file and default config file is included in
the package that is uploaded to PyPI, we’ll also need to add a MANIFEST.in
file:

include LICENSE
include MANIFEST.in
include README.rst
include mopidy_soundspot/ext.conf

For details on the MANIFEST.in file format, check out the distutils docs [https://docs.python.org/2/distutils/sourcedist.html#manifest-template].
check-manifest [https://pypi.org/project/check-manifest] is a very
useful tool to check your MANIFEST.in file for completeness.

Example __init__.py

The __init__.py file should be placed inside the mopidy_soundspot
Python package.

The root of your Python package should have an __version__ attribute with a
PEP 386 [https://peps.python.org/pep-0386/] compliant version number, for example “0.1”. Next, it should have a
class named Extension which inherits from Mopidy’s extension base class,
mopidy.ext.Extension. This is the class referred to in the
entry_points part of setup.py. Any imports of other files in your
extension, outside of Mopidy and it’s core requirements, should be kept inside
methods. This ensures that this file can be imported without raising
ImportError [https://docs.python.org/3/library/exceptions.html#ImportError] exceptions for missing dependencies, etc.

The default configuration for the extension is defined by the
get_default_config() method in the Extension class which returns a
ConfigParser compatible config section. The config section’s name must
be the same as the extension’s short name, as defined in the entry_points
part of setup.py, for example soundspot. All extensions must include
an enabled config which normally should default to true. Provide good
defaults for all config values so that as few users as possible will need to
change them. The exception is if the config value has security implications; in
that case you should default to the most secure configuration. Leave any
configurations that don’t have meaningful defaults blank, like username
and password. In the example below, we’ve chosen to maintain the default
config as a separate file named ext.conf. This makes it easy to include the
default config in documentation without duplicating it.

This is mopidy_soundspot/__init__.py:

import logging
import os

from mopidy import config, exceptions, ext

__version__ = '0.1'

If you need to log, use loggers named after the current Python module
logger = logging.getLogger(__name__)

class Extension(ext.Extension):

 dist_name = 'Mopidy-Soundspot'
 ext_name = 'soundspot'
 version = __version__

 def get_default_config(self):
 conf_file = os.path.join(os.path.dirname(__file__), 'ext.conf')
 return config.read(conf_file)

 def get_config_schema(self):
 schema = super(Extension, self).get_config_schema()
 schema['username'] = config.String()
 schema['password'] = config.Secret()
 return schema

 def get_command(self):
 from .commands import SoundspotCommand
 return SoundspotCommand()

 def validate_environment(self):
 # Any manual checks of the environment to fail early.
 # Dependencies described by setup.py are checked by Mopidy, so you
 # should not check their presence here.
 pass

 def setup(self, registry):
 # You will typically only do one of the following things in a
 # single extension.

 # Register a frontend
 from .frontend import SoundspotFrontend
 registry.add('frontend', SoundspotFrontend)

 # Register a backend
 from .backend import SoundspotBackend
 registry.add('backend', SoundspotBackend)

 # Or nothing to register e.g. command extension
 pass

And this is mopidy_soundspot/ext.conf:

[soundspot]
enabled = true
username =
password =

For more detailed documentation on the extension class, see the mopidy.ext – Extension API.

Example frontend

If you want to use Mopidy’s core API from your extension, then you want to
implement a frontend.

The skeleton of a frontend would look like this. Notice that the frontend gets
passed a reference to the core API when it’s created. See the
Frontend API for more details.

import pykka

from mopidy import core

class SoundspotFrontend(pykka.ThreadingActor, core.CoreListener):
 def __init__(self, config, core):
 super(SoundspotFrontend, self).__init__()
 self.core = core

 # Your frontend implementation

Example backend

If you want to extend Mopidy to support new music and playlist sources, you
want to implement a backend. A backend does not have access to Mopidy’s core
API at all, but it does have a bunch of interfaces it can implement to extend
Mopidy.

The skeleton of a backend would look like this. See mopidy.backend — Backend API for more
details.

import pykka

from mopidy import backend

class SoundspotBackend(pykka.ThreadingActor, backend.Backend):
 def __init__(self, config, audio):
 super(SoundspotBackend, self).__init__()
 self.audio = audio

 # Your backend implementation

Example command

If you want to extend the Mopidy with a new helper not run from the server,
such as scanning for media, adding a command is the way to go. Your top level
command name will always match your extension name, but you are free to add
sub-commands with names of your choosing.

The skeleton of a command would look like this. See mopidy.commands — Commands API for
more details.

from mopidy import commands

class SoundspotCommand(commands.Command):
 help = 'Some text that will show up in --help'

 def __init__(self):
 super(SoundspotCommand, self).__init__()
 self.add_argument('--foo')

 def run(self, args, config, extensions):
 # Your command implementation
 return 0

Example web application

As of Mopidy 0.19, extensions can use Mopidy’s built-in web server to host
static web clients as well as Tornado and WSGI web applications. For several
examples, see the HTTP server side API docs or explore with the
Mopidy-API-Explorer [https://mopidy.com/ext/api-explorer] extension.

Running an extension

Once your extension is ready to go, to see it in action you’ll need to register
it with Mopidy. Typically this is done by running python setup.py install
from your extension’s Git repo root directory. While developing your extension
and to avoid doing this every time you make a change, you can instead run
python setup.py develop to effectively link Mopidy directly with your
development files.

Python conventions

In general, it would be nice if Mopidy extensions followed the same
Code style as Mopidy itself, as they’re part of the same ecosystem.

Use of Mopidy APIs

When writing an extension, you should only use APIs documented at
API reference. Other parts of Mopidy, like mopidy.internal, may change
at any time and are not something extensions should use.

Mopidy performs type checking to help catch extension bugs. This applies to
both frontend calls into core and return values from backends. Additionally
model fields always get validated to further guard against bad data.

Logging in extensions

For servers like Mopidy, logging is essential for understanding what’s
going on. We use the logging [https://docs.python.org/3/library/logging.html#module-logging] module from Python’s standard library. When
creating a logger, always namespace the logger using your Python package name
as this will be visible in Mopidy’s debug log:

import logging

logger = logging.getLogger('mopidy_soundspot')

Or even better, use the Python module name as the logger name:
logger = logging.getLogger(__name__)

When logging at logging level info or higher (i.e. warning, error,
and critical, but not debug) the log message will be displayed to all
Mopidy users. Thus, the log messages at those levels should be well written and
easy to understand.

As the logger name is not included in Mopidy’s default logging format, you
should make it obvious from the log message who is the source of the log
message. For example:

Loaded 17 Soundspot playlists

Is much better than:

Loaded 17 playlists

If you want to turn on debug logging for your own extension, but not for
everything else due to the amount of noise, see the docs for the
loglevels/* config section.

Making HTTP requests from extensions

Many Mopidy extensions need to make HTTP requests to use some web API. Here’s a
few recommendations to those extensions.

Proxies

If you make HTTP requests please make sure to respect the proxy configs, so that all the requests you make go through the proxy
configured by the Mopidy user. To make this easier for extension developers,
the helper function mopidy.httpclient.format_proxy() was added in Mopidy
1.1. This function returns the proxy settings formatted the way Requests
expects [https://2.python-requests.org/en/master/user/advanced/#proxies].

User-Agent strings

When you make HTTP requests, it’s helpful for debugging and usage analysis if
the client identifies itself with a proper User-Agent string. In Mopidy 1.1, we
added the helper function mopidy.httpclient.format_user_agent(). Here’s
an example of how to use it:

>>> from mopidy import httpclient
>>> import mopidy_soundspot
>>> httpclient.format_user_agent(
... f'{mopidy_soundspot.Extension.dist_name}/'
... f'{mopidy_soundspot.__version__}'
...)
'Mopidy-SoundSpot/2.0.0 Mopidy/3.0.0 Python/3.9.2'

Example using Requests sessions

Most Mopidy extensions that make HTTP requests use the Requests [https://2.python-requests.org/] library to do so. When using Requests, the
most convenient way to make sure the proxy and User-Agent header is set
properly is to create a Requests session object and use that object to make all
your HTTP requests:

from mopidy import httpclient

import requests

import mopidy_soundspot

def get_requests_session(proxy_config, user_agent):
 proxy = httpclient.format_proxy(proxy_config)
 full_user_agent = httpclient.format_user_agent(user_agent)

 session = requests.Session()
 session.proxies.update({'http': proxy, 'https': proxy})
 session.headers.update({'user-agent': full_user_agent})

 return session

``mopidy_config`` is the config object passed to your frontend/backend
constructor
session = get_requests_session(
 proxy_config=mopidy_config['proxy'],
 user_agent=(
 f'{mopidy_soundspot.Extension.dist_name}/{mopidy_soundspot.__version__}'
)
)

response = session.get('https://example.com')
Now do something with ``response`` and/or make further requests using the
``session`` object.

For further details, see Requests’ docs on session objects [https://2.python-requests.org/en/master/user/advanced/#session-objects].

Testing extensions

Creating test cases for your extensions makes them much simpler to maintain
over the long term. It can also make it easier for you to review and accept
pull requests from other contributors knowing that they will not break the
extension in some unanticipated way.

Before getting started, it is important to familiarize yourself with the
Python mock library [https://docs.python.org/dev/library/unittest.mock.html].
When it comes to running tests, Mopidy typically makes use of testing tools
like tox [https://tox.readthedocs.io/] and
pytest [https://docs.pytest.org/].

Testing approach

To a large extent the testing approach to follow depends on how your extension
is structured, which parts of Mopidy it interacts with, and if it uses any 3rd
party APIs or makes any HTTP requests to the outside world.

The sections that follow contain code extracts that highlight some of the
key areas that should be tested. For more exhaustive examples, you may want to
take a look at the test cases that ship with Mopidy itself which covers
everything from instantiating various controllers, reading configuration files,
and simulating events that your extension can listen to.

In general your tests should cover the extension definition, the relevant
Mopidy controllers, and the Pykka backend and / or frontend actors that form
part of the extension.

Testing the extension definition

Test cases for checking the definition of the extension should ensure that:

	the extension provides a ext.conf configuration file containing the
relevant parameters with their default values,

	that the config schema is fully defined, and

	that the extension’s actor(s) are added to the Mopidy registry on setup.

An example of what these tests could look like is provided below:

def test_get_default_config():
 ext = Extension()
 config = ext.get_default_config()

 assert '[my_extension]' in config
 assert 'enabled = true' in config
 assert 'param_1 = value_1' in config
 assert 'param_2 = value_2' in config
 assert 'param_n = value_n' in config

def test_get_config_schema():
 ext = Extension()
 schema = ext.get_config_schema()

 assert 'enabled' in schema
 assert 'param_1' in schema
 assert 'param_2' in schema
 assert 'param_n' in schema

def test_setup():
 registry = mock.Mock()

 ext = Extension()
 ext.setup(registry)
 calls = [mock.call('frontend', frontend_lib.MyFrontend),
 mock.call('backend', backend_lib.MyBackend)]
 registry.add.assert_has_calls(calls, any_order=True)

Testing backend actors

Backends can usually be constructed with a small mockup of the configuration
file, and mocking the audio actor:

@pytest.fixture
def config():
 return {
 'http': {
 'hostname': '127.0.0.1',
 'port': '6680'
 },
 'proxy': {
 'hostname': 'host_mock',
 'port': 'port_mock'
 },
 'my_extension': {
 'enabled': True,
 'param_1': 'value_1',
 'param_2': 'value_2',
 'param_n': 'value_n',
 }
 }

def get_backend(config):
 return backend.MyBackend(config=config, audio=mock.Mock())

The following libraries might be useful for mocking any HTTP requests that
your extension makes:

	responses [https://pypi.org/project/responses] - A utility library for
mocking out the requests Python library.

	vcrpy [https://pypi.org/project/vcrpy] - Automatically mock your HTTP
interactions to simplify and speed up testing.

At the very least, you’ll probably want to patch requests or any other web
API’s that you use to avoid any unintended HTTP requests from being made by
your backend during testing:

from mock import patch
@mock.patch('requests.get',
 mock.Mock(side_effect=Exception('Intercepted unintended HTTP call')))

Backend tests should also ensure that:

	the backend provides a unique URI scheme,

	that it sets up the various providers (e.g. library, playback, etc.)

def test_uri_schemes(config):
 backend = get_backend(config)

 assert 'my_scheme' in backend.uri_schemes

def test_init_sets_up_the_providers(config):
 backend = get_backend(config)

 assert isinstance(backend.library, library.MyLibraryProvider)
 assert isinstance(backend.playback, playback.MyPlaybackProvider)

Once you have a backend instance to work with, testing the various playback,
library, and other providers is straight forward and should not require any
special setup or processing.

Testing libraries

Library test cases should cover the implementations of the standard Mopidy
API (e.g. browse, lookup, refresh, get_images, search,
etc.)

Testing playback controllers

Testing change_track and translate_uri is probably the highest
priority, since these methods are used to prepare the track and provide its
audio URL to Mopidy’s core for playback.

Testing frontends

Because most frontends will interact with the Mopidy core, it will most likely
be necessary to have a full core running for testing purposes:

self.core = core.Core.start(
 config, backends=[get_backend(config)]).proxy()

It may be advisable to take a quick look at the
Pykka API [https://pykka.readthedocs.io/en/latest/] at this point to make sure that
you are familiar with ThreadingActor, ThreadingFuture, and the
proxies that allow you to access the attributes and methods of the actor
directly.

You’ll also need a list of Track and a list of URIs in
order to populate the core with some simple tracks that can be used for
testing:

class BaseTest(unittest.TestCase):
 tracks = [
 models.Track(uri='my_scheme:track:id1', length=40000), # Regular track
 models.Track(uri='my_scheme:track:id2', length=None), # No duration
]

uris = ['my_scheme:track:id1', 'my_scheme:track:id2']

In the setup() method of your test class, you will then probably need to
monkey patch looking up tracks in the library (so that it will always use the
lists that you defined), and then populate the core’s tracklist:

def lookup(uris):
 result = {uri: [] for uri in uris}
 for track in self.tracks:
 if track.uri in result:
 result[track.uri].append(track)
 return result

self.core.library.lookup = lookup
self.tl_tracks = self.core.tracklist.add(uris=self.uris).get()

With all of that done you should finally be ready to instantiate your frontend:

self.frontend = frontend.MyFrontend.start(config(), self.core).proxy()

Keep in mind that the normal core and frontend methods will usually return
pykka.ThreadingFuture objects, so you will need to add .get() at
the end of most method calls in order to get to the actual return values.

Triggering events

There may be test case scenarios that require simulating certain event triggers
that your extension’s actors can listen for and respond on. An example for
patching the listener to store these events, and then play them back for your
actor, may look something like this:

self.events = []
self.patcher = mock.patch('mopidy.listener.send')
self.send_mock = self.patcher.start()

def send(cls, event, **kwargs):
 self.events.append((event, kwargs))

self.send_mock.side_effect = send

Once all of the events have been captured, a method like
replay_events() can be called at the relevant points in the code to have
the events fire:

def replay_events(self, my_actor, until=None):
 while self.events:
 if self.events[0][0] == until:
 break
 event, kwargs = self.events.pop(0)
 frontend.on_event(event, **kwargs).get()

For further details and examples, refer to the
/tests [https://github.com/mopidy/mopidy/tree/main/tests]
directory in the Mopidy repo.

Code style

All projects in the Mopidy organization follows the following code style:

	Automatically format all code with Ruff [https://github.com/astral-sh/ruff],
using the default configuration.

	Automatically sort imports using Ruff [https://github.com/astral-sh/ruff], using the default configuration.

	As far as reasonable and possible, comply with the lint warnings produced by
Ruff [https://github.com/astral-sh/ruff].

The strict adherence to Ruff are enforced by our CI setup.
Pull requests that do not pass these checks will not be merged.

Release procedures

Here we try to keep an up to date record of how Mopidy releases are made. This
documentation serves both as a checklist, to reduce the project’s dependency on
key individuals, and as a stepping stone to more automation.

Releasing extensions

Extensions that are maintained in the Mopidy organization use a quite
stream-lined release procedure.

	Make sure that everything has been merged into the main branch on
GitHub, and that all CI checks are green.

	Perform any manual tests you feel are required.

	Bump the version in setup.cfg in line with our strategy.
For example, to 2.0.2.

	Commit the bumped version:

git commit -m "Release v2.0.2"

	Tag the commit with an annotated tag:

git tag -a -m "Release v2.0.2" v2.0.2

It is encouraged to use -s to sign the tag if you have a GnuPG setup.

	Push to GitHub:

git push origin main --follow-tags

	Go to the GitHub repository’s tags page, e.g.
https://github.com/mopidy/mopidy-foo/tags. Find the tag and select
“Create release” in the tag’s dropdown menu.

	Copy the tag, e.g. v2.0.2 into the “title” field. Write a changelog
entry in the description field, and hit “Publish release”.

	GitHub Actions now builds the package and uploads it to PyPI.

This procedure has several benefits:

	Everyone with commit access can make releases.

	No one, except those with direct PyPI access, can make releases without
also leaving the source code of what they released publicly available on
GitHub, creating an audit log in case of any malicious actions.

	The changelog can be amended post-release through the GitHub Releases UI.

The primary drawback of this procedure is that there is no obvious way to
maintain a changelog in-between releases. The preferred solution is to make
releases often, so that writing up a changelog from the recent Git commits is
done in a minute or two.

How to setup this release workflow

If you maintain a Mopidy extension, you’re encouraged to adopt the same
procedure.

To setup this on your own repo, you must:

	Copy .github/workflows/release.yml from the Mopidy
cookiecutter project [https://github.com/mopidy/cookiecutter-mopidy-ext/blob/main/%7B%7Bcookiecutter.repo_name%7D%7D/.github/workflows/release.yml].

	Create an API token in your account settings at PyPI with scope to access
the extension’s PyPI package.

	Copy the token to a new secret called PYPI_TOKEN in your GitHub repo’s
settings. Ignore the section titled “Using this token” on PyPI.

With the release.yml file and the PYPI_TOKEN secret in place, releases
should automatically be uploaded to PyPI when you follow the procedure above.

Releasing Mopidy itself

Mopidy itself is a bit more complicated than extensions because the changelog
is maintained in the Git repo.

Preparations

	Make sure that everything has been merged into the main branch on
GitHub, and that all CI checks are green.

	Make sure the changelog in the docs/changelog.rst file includes all
significant changes since the last release. Commit and push it.

	Perform any manual tests you feel are required.

Release

	Select a version number in line with our strategy,
e.g. v3.3.0 in the following examples.

	Update the release in docs/changelog.rst with the right version number
and release date.

	Commit the final touches to the changelog:

git commit -m "Release v3.3.0"

	Tag the commit with an annotated tag:

git tag -a -m "Release v3.3.0" v3.3.0

It is encouraged to use -s to sign the tag if you have a GnuPG setup.

	Verify that Mopidy reports the new version number:

 mopidy --version

If it doesn't, check that you've properly tagged the release.

	Push to GitHub:

git push origin main --follow-tags

	Go to the GitHub repository’s
tags page [https://github.com/mopidy/mopidy/tags].
Find the tag and select “Create release” in the tag’s dropdown menu.

	Copy the tag, e.g. v3.3.0 into the “title” field. Write a changelog
entry in the description field, and hit “Publish release”.

	GitHub Actions now builds the package and uploads it to PyPI.

Post-release

	Make sure the new tag is built by
Read the Docs [https://readthedocs.org/projects/mopidy/builds/],
and that the “stable” version [https://docs.mopidy.com/stable/]
shows the newly released version.

	Spread the word through an announcement post on the Discourse forum [https://discourse.mopidy.com/].

	Notify distribution packagers, including but not limited to:

	Arch Linux [https://archlinux.org/packages/extra/any/mopidy/]

	Debian [https://salsa.debian.org/mopidy-team]

	Homebrew [https://github.com/mopidy/homebrew-mopidy]

API reference

Note

Only APIs documented here are public and open for use by Mopidy
extensions.

Concepts

	Architecture
	Frontends

	Core

	Backends

	Audio

	Mixer

	mopidy.models — Data models
	Data model relations

	Data model API
	Ref
	Ref.ALBUM

	Ref.ARTIST

	Ref.DIRECTORY

	Ref.PLAYLIST

	Ref.TRACK

	Ref.album()

	Ref.artist()

	Ref.directory()

	Ref.name

	Ref.playlist()

	Ref.track()

	Ref.type

	Ref.uri

	Track
	Track.album

	Track.artists

	Track.bitrate

	Track.comment

	Track.composers

	Track.date

	Track.disc_no

	Track.genre

	Track.last_modified

	Track.length

	Track.musicbrainz_id

	Track.name

	Track.performers

	Track.track_no

	Track.uri

	Album
	Album.artists

	Album.date

	Album.musicbrainz_id

	Album.name

	Album.num_discs

	Album.num_tracks

	Album.uri

	Artist
	Artist.musicbrainz_id

	Artist.name

	Artist.sortname

	Artist.uri

	Playlist
	Playlist.last_modified

	Playlist.length

	Playlist.name

	Playlist.tracks

	Playlist.uri

	Image
	Image.height

	Image.uri

	Image.width

	TlTrack
	TlTrack.tlid

	TlTrack.track

	SearchResult
	SearchResult.albums

	SearchResult.artists

	SearchResult.tracks

	SearchResult.uri

	Data model helpers
	ImmutableObject
	ImmutableObject.replace()

	ValidatedImmutableObject
	ValidatedImmutableObject.replace()

	Data model (de)serialization
	model_json_decoder()

	ModelJSONEncoder

	Data model field types
	Field

	String

	Identifier

	URI

	Date

	Integer

	Collection

Basics

	mopidy.core — Core API
	Core
	Core.tracklist

	Core.playback

	Core.library

	Core.playlists

	Core.mixer

	Core.history

	Core.get_uri_schemes()

	Core.get_version()

	Tracklist controller
	TracklistController

	Manipulating
	TracklistController.add()

	TracklistController.remove()

	TracklistController.clear()

	TracklistController.move()

	TracklistController.shuffle()

	Current state
	TracklistController.get_tl_tracks()

	TracklistController.index()

	TracklistController.get_version()

	TracklistController.get_length()

	TracklistController.get_tracks()

	TracklistController.slice()

	TracklistController.filter()

	Future state
	TracklistController.get_eot_tlid()

	TracklistController.get_next_tlid()

	TracklistController.get_previous_tlid()

	TracklistController.eot_track()

	TracklistController.next_track()

	TracklistController.previous_track()

	Options
	TracklistController.get_consume()

	TracklistController.set_consume()

	TracklistController.get_random()

	TracklistController.set_random()

	TracklistController.get_repeat()

	TracklistController.set_repeat()

	TracklistController.get_single()

	TracklistController.set_single()

	Playback controller
	PlaybackController

	Playback control
	PlaybackController.play()

	PlaybackController.next()

	PlaybackController.previous()

	PlaybackController.stop()

	PlaybackController.pause()

	PlaybackController.resume()

	PlaybackController.seek()

	Current track
	PlaybackController.get_current_tl_track()

	PlaybackController.get_current_track()

	PlaybackController.get_current_tlid()

	PlaybackController.get_stream_title()

	PlaybackController.get_time_position()

	Playback states
	PlaybackController.get_state()

	PlaybackController.set_state()

	mopidy.core.PlaybackState
	mopidy.core.PlaybackState.STOPPED

	mopidy.core.PlaybackState.PLAYING

	mopidy.core.PlaybackState.PAUSED

	Library controller
	mopidy.core.LibraryController

	LibraryController.browse()

	LibraryController.search()

	LibraryController.lookup()

	LibraryController.refresh()

	LibraryController.get_images()

	LibraryController.get_distinct()

	Playlists controller
	mopidy.core.PlaylistsController

	PlaylistsController.get_uri_schemes()

	Fetching
	PlaylistsController.as_list()

	PlaylistsController.get_items()

	PlaylistsController.lookup()

	PlaylistsController.refresh()

	Manipulating
	PlaylistsController.create()

	PlaylistsController.save()

	PlaylistsController.delete()

	Mixer controller
	mopidy.core.MixerController

	MixerController.get_mute()

	MixerController.set_mute()

	MixerController.get_volume()

	MixerController.set_volume()

	History controller
	mopidy.core.HistoryController

	HistoryController.get_history()

	HistoryController.get_length()

	Core events
	CoreListener
	CoreListener.mute_changed()

	CoreListener.on_event()

	CoreListener.options_changed()

	CoreListener.playback_state_changed()

	CoreListener.playlist_changed()

	CoreListener.playlist_deleted()

	CoreListener.playlists_loaded()

	CoreListener.seeked()

	CoreListener.send()

	CoreListener.stream_title_changed()

	CoreListener.track_playback_ended()

	CoreListener.track_playback_paused()

	CoreListener.track_playback_resumed()

	CoreListener.track_playback_started()

	CoreListener.tracklist_changed()

	CoreListener.volume_changed()

	Frontend API
	Frontend implementations

	mopidy.backend — Backend API
	URIs and routing of requests to the backend

	Backend class
	Backend
	Backend.audio

	Backend.library

	Backend.ping()

	Backend.playback

	Backend.playlists

	Backend.uri_schemes

	Playback provider
	PlaybackProvider
	PlaybackProvider.change_track()

	PlaybackProvider.get_time_position()

	PlaybackProvider.is_live()

	PlaybackProvider.on_source_setup()

	PlaybackProvider.pause()

	PlaybackProvider.play()

	PlaybackProvider.prepare_change()

	PlaybackProvider.resume()

	PlaybackProvider.seek()

	PlaybackProvider.should_download()

	PlaybackProvider.stop()

	PlaybackProvider.translate_uri()

	Playlists provider
	PlaylistsProvider
	PlaylistsProvider.as_list()

	PlaylistsProvider.create()

	PlaylistsProvider.delete()

	PlaylistsProvider.get_items()

	PlaylistsProvider.lookup()

	PlaylistsProvider.refresh()

	PlaylistsProvider.save()

	Library provider
	LibraryProvider
	LibraryProvider.browse()

	LibraryProvider.get_distinct()

	LibraryProvider.get_images()

	LibraryProvider.lookup()

	LibraryProvider.lookup_many()

	LibraryProvider.refresh()

	LibraryProvider.root_directory

	LibraryProvider.search()

	Backend listener
	BackendListener
	BackendListener.playlists_loaded()

	BackendListener.send()

	Backend implementations

	mopidy.ext – Extension API
	Extension
	Extension.check_attr()

	Extension.dist_name

	Extension.ext_name

	Extension.get_cache_dir()

	Extension.get_command()

	Extension.get_config_dir()

	Extension.get_config_schema()

	Extension.get_data_dir()

	Extension.get_default_config()

	Extension.setup()

	Extension.validate_environment()

	Extension.version

	ExtensionData
	ExtensionData.command

	ExtensionData.config_defaults

	ExtensionData.config_schema

	ExtensionData.entry_point

	ExtensionData.extension

	Registry
	Registry.add()

	load_extensions()

	validate_extension_data()

Web/JavaScript

	HTTP server side API
	Static web client example

	Tornado application example

	WSGI application example

	API implementors

	HTTP JSON-RPC API
	HTTP POST API

	WebSocket API

	JSON-RPC 2.0 messages

	Event messages

	Mopidy.js JavaScript library

Audio

	mopidy.audio — Audio API
	Audio
	Audio.enable_sync_handler()

	Audio.get_current_tags()

	Audio.get_position()

	Audio.mixer

	Audio.on_start()

	Audio.on_stop()

	Audio.pause_playback()

	Audio.prepare_change()

	Audio.set_about_to_finish_callback()

	Audio.set_position()

	Audio.set_source_setup_callback()

	Audio.set_uri()

	Audio.start_playback()

	Audio.state

	Audio.stop_playback()

	Audio.wait_for_state_change()

	Audio listener
	AudioListener
	AudioListener.position_changed()

	AudioListener.reached_end_of_stream()

	AudioListener.send()

	AudioListener.state_changed()

	AudioListener.stream_changed()

	AudioListener.tags_changed()

	Audio scanner
	Scanner
	Scanner.scan()

	Audio utils
	Signals
	Signals.clear()

	Signals.connect()

	Signals.disconnect()

	clocktime_to_millisecond()

	millisecond_to_clocktime()

	setup_proxy()

	supported_uri_schemes()

	mopidy.mixer — Audio mixer API
	Mixer
	Mixer.get_mute()

	Mixer.get_volume()

	Mixer.name

	Mixer.ping()

	Mixer.set_mute()

	Mixer.set_volume()

	Mixer.trigger_mute_changed()

	Mixer.trigger_volume_changed()

	MixerListener
	MixerListener.mute_changed()

	MixerListener.send()

	MixerListener.volume_changed()

	Mixer implementations

Utilities

	mopidy.commands — Commands API
	Command
	Command.add_argument()

	Command.add_child()

	Command.exit()

	Command.format_help()

	Command.format_usage()

	Command.parse()

	Command.run()

	Command.set()

	ConfigCommand
	ConfigCommand.run()

	DepsCommand
	DepsCommand.run()

	RootCommand
	RootCommand.run()

	mopidy.config — Config API
	ConfigValue
	ConfigValue.deserialize()

	ConfigValue.serialize()

	Float
	Float.deserialize()

	List
	List.deserialize()

	List.serialize()

	Pair
	Pair.deserialize()

	Pair.serialize()

	Config section schemas
	ConfigSchema
	ConfigSchema.deserialize()

	ConfigSchema.serialize()

	MapConfigSchema

	Config value types
	Boolean
	Boolean.deserialize()

	Boolean.serialize()

	ConfigValue
	ConfigValue.deserialize()

	ConfigValue.serialize()

	Deprecated
	Deprecated.deserialize()

	Deprecated.serialize()

	Float
	Float.deserialize()

	Hostname
	Hostname.deserialize()

	Integer
	Integer.deserialize()

	List
	List.deserialize()

	List.serialize()

	LogColor
	LogColor.deserialize()

	LogColor.serialize()

	LogLevel
	LogLevel.deserialize()

	LogLevel.serialize()

	Pair
	Pair.deserialize()

	Pair.serialize()

	Path
	Path.deserialize()

	Path.serialize()

	Port

	Secret
	Secret.serialize()

	String
	String.deserialize()

	String.serialize()

	Config value validators
	validate_choice()

	validate_maximum()

	validate_minimum()

	validate_required()

	mopidy.httpclient — HTTP Client helpers
	format_proxy()

	format_user_agent()

	mopidy.zeroconf — Zeroconf API
	Zeroconf
	Zeroconf.publish()

	Zeroconf.unpublish()

Architecture

The overall architecture of Mopidy is organized around multiple frontends and
backends. The frontends use the core API. The core actor makes multiple backends
work as one. The backends connect to various music sources. The core actor use
the mixer actor to control volume, while the backends use the audio actor to
play audio.

[image: digraph overall_architecture { "Multiple frontends" -> Core Core -> "Multiple backends" Core -> Mixer "Multiple backends" -> Audio }]

Frontends

Frontends expose Mopidy to the external world. They can implement servers for
protocols like HTTP, MPD and MPRIS, and they can be used to update other
services when something happens in Mopidy, like the Last.fm scrobbler frontend
does. See Frontend API for more details.

[image: digraph frontend_architecture { "HTTP\nfrontend" -> Core "MPD\nfrontend" -> Core "MPRIS\nfrontend" -> Core "Scrobbler\nfrontend" -> Core }]

Core

The core is organized as a set of controllers with responsiblity for separate
sets of functionality.

The core is the single actor that the frontends send their requests to. For
every request from a frontend it calls out to one or more backends which does
the real work, and when the backends respond, the core actor is responsible for
combining the responses into a single response to the requesting frontend.

The core actor also keeps track of the tracklist, since it doesn’t belong to a
specific backend.

See mopidy.core — Core API for more details.

[image: digraph core_architecture { Core -> "Tracklist\ncontroller" Core -> "Library\ncontroller" Core -> "Playback\ncontroller" Core -> "Playlists\ncontroller" Core -> "History\ncontroller" "Library\ncontroller" -> "Local backend" "Library\ncontroller" -> "Spotify backend" "Playback\ncontroller" -> "Local backend" "Playback\ncontroller" -> "Spotify backend" "Playback\ncontroller" -> Audio "Playlists\ncontroller" -> "Local backend" "Playlists\ncontroller" -> "Spotify backend" }]

Backends

The backends are organized as a set of providers with responsiblity for
separate sets of functionality, similar to the core actor.

Anything specific to i.e. Spotify integration or local storage is contained in
the backends. To integrate with new music sources, you just add a new backend.
See mopidy.backend — Backend API for more details.

[image: digraph backend_architecture { "Local backend" -> "Local\nlibrary\nprovider" -> "Local disk" "Local backend" -> "Local\nplayback\nprovider" -> "Local disk" "Local backend" -> "Local\nplaylists\nprovider" -> "Local disk" "Local\nplayback\nprovider" -> Audio "Spotify backend" -> "Spotify\nlibrary\nprovider" -> "Spotify service" "Spotify backend" -> "Spotify\nplayback\nprovider" -> "Spotify service" "Spotify backend" -> "Spotify\nplaylists\nprovider" -> "Spotify service" "Spotify\nplayback\nprovider" -> Audio }]

Audio

The audio actor is a thin wrapper around the parts of the GStreamer library we
use. If you implement an advanced backend, you may need to implement your own
playback provider using the mopidy.audio — Audio API, but most backends can use the
default playback provider without any changes.

Mixer

The mixer actor is responsible for volume control and muting. The default
mixer use the audio actor to control volume in software. The alternative
implementations are typically independent of the audio actor, but instead use
some third party Python library or a serial interface to control other forms
of volume controls.

mopidy.models — Data models

These immutable data models are used for all data transfer within the Mopidy
backends and between the backends and the MPD frontend. All fields are optional
and immutable. In other words, they can only be set through the class
constructor during instance creation. Additionally fields are type checked.

If you want to modify a model, use the
replace() method. It accepts keyword
arguments for the parts of the model you want to change, and copies the rest of
the data from the model you call it on. Example:

>>> from mopidy.models import Track
>>> track1 = Track(name='Christmas Carol', length=171)
>>> track1
Track(artists=[], length=171, name='Christmas Carol')
>>> track2 = track1.replace(length=37)
>>> track2
Track(artists=[], length=37, name='Christmas Carol')
>>> track1
Track(artists=[], length=171, name='Christmas Carol')

Data model relations

[image: digraph model_relations { Ref -> Album [style="dotted", weight=1] Ref -> Artist [style="dotted", weight=1] Ref -> Directory [style="dotted", weight=1] Ref -> Playlist [style="dotted", weight=1] Ref -> Track [style="dotted", weight=1] Playlist -> Track [label="has 0..n", weight=2] Track -> Album [label="has 0..1", weight=10] Track -> Artist [label="has 0..n", weight=10] Album -> Artist [label="has 0..n", weight=10] Image SearchResult -> Artist [label="has 0..n", weight=1] SearchResult -> Album [label="has 0..n", weight=1] SearchResult -> Track [label="has 0..n", weight=1] TlTrack -> Track [label="has 1", weight=20] }]

Data model API

	
class mopidy.models.Ref(*args: Any [https://docs.python.org/3/library/typing.html#typing.Any], **kwargs: Any [https://docs.python.org/3/library/typing.html#typing.Any])

	Model to represent URI references with a human friendly name and type
attached. This is intended for use a lightweight object “free” of metadata
that can be passed around instead of using full blown models.

	Parameters:

	
	uri (string) – object URI

	name (string) – object name

	type (string) – object type

	
ALBUM = 'album'

	Constant used for comparison with the type field.

	
ARTIST = 'artist'

	Constant used for comparison with the type field.

	
DIRECTORY = 'directory'

	Constant used for comparison with the type field.

	
PLAYLIST = 'playlist'

	Constant used for comparison with the type field.

	
TRACK = 'track'

	Constant used for comparison with the type field.

	
classmethod album(**kwargs)

	Create a Ref with type ALBUM.

	
classmethod artist(**kwargs)

	Create a Ref with type ARTIST.

	
classmethod directory(**kwargs)

	Create a Ref with type DIRECTORY.

	
name

	The object name. Read-only.

	
classmethod playlist(**kwargs)

	Create a Ref with type PLAYLIST.

	
classmethod track(**kwargs)

	Create a Ref with type TRACK.

	
type

	The object type, e.g. “artist”, “album”, “track”, “playlist”,
“directory”. Read-only.

	
uri

	The object URI. Read-only.

	
class mopidy.models.Track(*args: Any [https://docs.python.org/3/library/typing.html#typing.Any], **kwargs: Any [https://docs.python.org/3/library/typing.html#typing.Any])

	
	Parameters:

	
	uri (string) – track URI

	name (string) – track name

	artists (list of Artist) – track artists

	album (Album) – track album

	composers (list of Artist) – track composers

	performers (list of Artist) – track performers

	genre (string) – track genre

	track_no (integer or None if unknown) – track number in album

	disc_no (integer or None if unknown) – disc number in album

	date (string) – track release date (YYYY or YYYY-MM-DD)

	length (integer or None if there is no duration) – track length in milliseconds

	bitrate (integer) – bitrate in kbit/s

	comment (string) – track comment

	musicbrainz_id (string) – MusicBrainz ID

	last_modified (integer or None if unknown) – Represents last modification time

	
album

	The track Album. Read-only.

	
artists

	A set of track artists. Read-only.

	
bitrate

	The track’s bitrate in kbit/s. Read-only.

	
comment

	The track comment. Read-only.

	
composers

	A set of track composers. Read-only.

	
date

	The track release date. Read-only.

	
disc_no

	The disc number in the album. Read-only.

	
genre

	The track genre. Read-only.

	
last_modified

	Integer representing when the track was last modified. Exact meaning
depends on source of track. For local files this is the modification
time in milliseconds since Unix epoch. For other backends it could be an
equivalent timestamp or simply a version counter.

	
length

	The track length in milliseconds. Read-only.

	
musicbrainz_id

	The MusicBrainz ID of the track. Read-only.

	
name

	The track name. Read-only.

	
performers

	A set of track performers`. Read-only.

	
track_no

	The track number in the album. Read-only.

	
uri

	The track URI. Read-only.

	
class mopidy.models.Album(*args: Any [https://docs.python.org/3/library/typing.html#typing.Any], **kwargs: Any [https://docs.python.org/3/library/typing.html#typing.Any])

	
	Parameters:

	
	uri (string) – album URI

	name (string) – album name

	artists (list of Artist) – album artists

	num_tracks (integer or None if unknown) – number of tracks in album

	num_discs (integer or None if unknown) – number of discs in album

	date (string) – album release date (YYYY or YYYY-MM-DD)

	musicbrainz_id (string) – MusicBrainz ID

	
artists

	A set of album artists. Read-only.

	
date

	The album release date. Read-only.

	
musicbrainz_id

	The MusicBrainz ID of the album. Read-only.

	
name

	The album name. Read-only.

	
num_discs

	The number of discs in the album. Read-only.

	
num_tracks

	The number of tracks in the album. Read-only.

	
uri

	The album URI. Read-only.

	
class mopidy.models.Artist(*args: Any [https://docs.python.org/3/library/typing.html#typing.Any], **kwargs: Any [https://docs.python.org/3/library/typing.html#typing.Any])

	
	Parameters:

	
	uri (string) – artist URI

	name (string) – artist name

	sortname (string) – artist name for sorting

	musicbrainz_id (string) – MusicBrainz ID

	
musicbrainz_id

	The MusicBrainz ID of the artist. Read-only.

	
name

	The artist name. Read-only.

	
sortname

	Artist name for better sorting, e.g. with articles stripped

	
uri

	The artist URI. Read-only.

	
class mopidy.models.Playlist(*args: Any [https://docs.python.org/3/library/typing.html#typing.Any], **kwargs: Any [https://docs.python.org/3/library/typing.html#typing.Any])

	
	Parameters:

	
	uri (string) – playlist URI

	name (string) – playlist name

	tracks (list of Track elements) – playlist’s tracks

	last_modified (int [https://docs.python.org/3/library/functions.html#int]) – playlist’s modification time in milliseconds since Unix epoch

	
last_modified

	The playlist modification time in milliseconds since Unix epoch.
Read-only.

Integer, or None if unknown.

	
property length

	The number of tracks in the playlist. Read-only.

	
name

	The playlist name. Read-only.

	
tracks

	The playlist’s tracks. Read-only.

	
uri

	The playlist URI. Read-only.

	
class mopidy.models.Image(*args: Any [https://docs.python.org/3/library/typing.html#typing.Any], **kwargs: Any [https://docs.python.org/3/library/typing.html#typing.Any])

	
	Parameters:

	
	uri (string) – URI of the image

	width (int [https://docs.python.org/3/library/functions.html#int]) – Optional width of image or None

	height (int [https://docs.python.org/3/library/functions.html#int]) – Optional height of image or None

	
height

	Optional height of the image or None. Read-only.

	
uri

	The image URI. Read-only.

	
width

	Optional width of the image or None. Read-only.

	
class mopidy.models.TlTrack(*args: Any [https://docs.python.org/3/library/typing.html#typing.Any], **kwargs: Any [https://docs.python.org/3/library/typing.html#typing.Any])

	A tracklist track. Wraps a regular track and it’s tracklist ID.

The use of TlTrack allows the same track to appear multiple times
in the tracklist.

This class also accepts it’s parameters as positional arguments. Both
arguments must be provided, and they must appear in the order they are
listed here.

This class also supports iteration, so your extract its values like this:

(tlid, track) = tl_track

	Parameters:

	
	tlid (int [https://docs.python.org/3/library/functions.html#int]) – tracklist ID

	track (Track) – the track

	
tlid

	The tracklist ID. Read-only.

	
track

	The track. Read-only.

	
class mopidy.models.SearchResult(*args: Any [https://docs.python.org/3/library/typing.html#typing.Any], **kwargs: Any [https://docs.python.org/3/library/typing.html#typing.Any])

	
	Parameters:

	
	uri (string) – search result URI

	tracks (list of Track elements) – matching tracks

	artists (list of Artist elements) – matching artists

	albums (list of Album elements) – matching albums

	
albums

	The albums matching the search query. Read-only.

	
artists

	The artists matching the search query. Read-only.

	
tracks

	The tracks matching the search query. Read-only.

	
uri

	The search result URI. Read-only.

Data model helpers

	
class mopidy.models.ImmutableObject(*_args, **kwargs)

	Superclass for immutable objects whose fields can only be modified via the
constructor.

This version of this class has been retained to avoid breaking any clients
relying on it’s behavior. Internally in Mopidy we now use
ValidatedImmutableObject for type safety and it’s much smaller
memory footprint.

	Parameters:

	kwargs (any) – kwargs to set as fields on the object

	
replace(**kwargs)

	Replace the fields in the model and return a new instance.

Examples:

Returns a track with a new name
Track(name='foo').replace(name='bar')
Return an album with a new number of tracks
Album(num_tracks=2).replace(num_tracks=5)

	Parameters:

	kwargs (any) – kwargs to set as fields on the object

	Return type:

	instance of the model with replaced fields

	
class mopidy.models.ValidatedImmutableObject(*args: Any [https://docs.python.org/3/library/typing.html#typing.Any], **kwargs: Any [https://docs.python.org/3/library/typing.html#typing.Any])

	Superclass for immutable objects whose fields can only be modified via the
constructor. Fields should be Field instances to ensure type
safety in our models.

Note that since these models can not be changed, we heavily memoize them
to save memory. So constructing a class with the same arguments twice will
give you the same instance twice.

	
replace(**kwargs)

	Replace the fields in the model and return a new instance.

Examples:

Returns a track with a new name
Track(name='foo').replace(name='bar')
Return an album with a new number of tracks
Album(num_tracks=2).replace(num_tracks=5)

Note that internally we memoize heavily to keep memory usage down given
our overly repetitive data structures. So you might get an existing
instance if it contains the same values.

	Parameters:

	kwargs (any) – kwargs to set as fields on the object

	Return type:

	instance of the model with replaced fields

Data model (de)serialization

	
mopidy.models.model_json_decoder(dct)

	Automatically deserialize Mopidy models from JSON.

Usage:

>>> import json
>>> json.loads(
... '{"a_track": {"__model__": "Track", "name": "name"}}',
... object_hook=model_json_decoder)
{u'a_track': Track(artists=[], name=u'name')}

	
class mopidy.models.ModelJSONEncoder(*, skipkeys=False, ensure_ascii=True, check_circular=True, allow_nan=True, sort_keys=False, indent=None, separators=None, default=None)

	Automatically serialize Mopidy models to JSON.

Usage:

>>> import json
>>> json.dumps({'a_track': Track(name='name')}, cls=ModelJSONEncoder)
'{"a_track": {"__model__": "Track", "name": "name"}}'

Data model field types

	
class mopidy.models.fields.Field(default=None, type=None, choices=None) → None [https://docs.python.org/3/library/constants.html#None]

	Base field for use in
ValidatedImmutableObject. These fields
are responsible for type checking and other data sanitation in our models.

For simplicity fields use the Python descriptor protocol to store the
values in the instance dictionary. Also note that fields are mutable if
the object they are attached to allow it.

Default values will be validated with the exception of None.

	Parameters:

	
	default (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][TypeVar [https://docs.python.org/3/library/typing.html#typing.TypeVar](T)]) – default value for field

	type (type [https://docs.python.org/3/library/functions.html#type][TypeVar [https://docs.python.org/3/library/typing.html#typing.TypeVar](T)] | None [https://docs.python.org/3/library/constants.html#None]) – if set the field value must be of this type

	choices (Iterable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable][TypeVar [https://docs.python.org/3/library/typing.html#typing.TypeVar](T)] | None [https://docs.python.org/3/library/constants.html#None]) – if set the field value must be one of these

	
class mopidy.models.fields.String(default=None) → None [https://docs.python.org/3/library/constants.html#None]

	Specialized Field which is wired up for bytes and unicode.

	Parameters:

	default (str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None]) – default value for field

	
class mopidy.models.fields.Identifier(default=None) → None [https://docs.python.org/3/library/constants.html#None]

	Field for storing values such as GUIDs or other identifiers.

Values will be interned.

	Parameters:

	default (str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None]) – default value for field

	
class mopidy.models.fields.URI(default=None, type=None, choices=None) → None [https://docs.python.org/3/library/constants.html#None]

	Field for storing URIs.

Values will be interned, currently not validated.

	Parameters:

	default (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][TypeVar [https://docs.python.org/3/library/typing.html#typing.TypeVar](T)]) – default value for field

	
class mopidy.models.fields.Date(default=None) → None [https://docs.python.org/3/library/constants.html#None]

	Field for storing ISO 8601 dates as a string.

Supported formats are YYYY-MM-DD, YYYY-MM and YYYY, currently
not validated.

	Parameters:

	default (str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None]) – default value for field

	
class mopidy.models.fields.Integer(default=None, min=None, max=None) → None [https://docs.python.org/3/library/constants.html#None]

	Field for storing integer numbers.

	Parameters:

	
	default – default value for field

	min – field value must be larger or equal to this value when set

	max – field value must be smaller or equal to this value when set

	
class mopidy.models.fields.Collection(type, container=<class 'tuple'>) → None [https://docs.python.org/3/library/constants.html#None]

	Field for storing collections of a given type.

	Parameters:

	
	type (type [https://docs.python.org/3/library/functions.html#type]) – all items stored in the collection must be of this type

	container (Callable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Callable][[], tuple [https://docs.python.org/3/library/stdtypes.html#tuple] | frozenset [https://docs.python.org/3/library/stdtypes.html#frozenset]]) – the type to store the items in

mopidy.core — Core API

The core API is the interface that is used by frontends like
mopidy.http and Mopidy-MPD. The core layer is in between the
frontends and the backends. Don’t forget that you will be accessing core
as a Pykka actor. If you are only interested in being notified about changes
in core see CoreListener.

Changed in version 1.1: All core API calls are now type checked.

Changed in version 1.1: All backend return values are now type checked.

	
class mopidy.core.Core(config, *, mixer=None, backends, audio=None) → None [https://docs.python.org/3/library/constants.html#None]

	
	
tracklist

	Manages everything related to the list of tracks we will play.
See TracklistController.

	
playback

	Manages playback state and the current playing track.
See PlaybackController.

	
library

	Manages the music library, e.g. searching and browsing for music.
See LibraryController.

	
playlists

	Manages stored playlists. See PlaylistsController.

	
mixer

	Manages volume and muting. See MixerController.

	
history

	Keeps record of what tracks have been played.
See HistoryController.

	
get_uri_schemes() → list [https://docs.python.org/3/library/stdtypes.html#list][UriScheme]

	Get list of URI schemes we can handle.

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list][NewType [https://docs.python.org/3/library/typing.html#typing.NewType](UriScheme, str [https://docs.python.org/3/library/stdtypes.html#str])]

	
get_version() → str [https://docs.python.org/3/library/stdtypes.html#str]

	Get version of the Mopidy core API.

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

Tracklist controller

	
class mopidy.core.TracklistController(core) → None [https://docs.python.org/3/library/constants.html#None]

	

Manipulating

	
TracklistController.add(tracks=None, at_position=None, uris=None) → list [https://docs.python.org/3/library/stdtypes.html#list][TlTrack]

	Add tracks to the tracklist.

If uris is given instead of tracks, the URIs are
looked up in the library and the resulting tracks are added to the
tracklist.

If at_position is given, the tracks are inserted at the given
position in the tracklist. If at_position is not given, the tracks
are appended to the end of the tracklist.

Triggers the mopidy.core.CoreListener.tracklist_changed() event.

	Parameters:

	
	tracks (Iterable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable][Track] | None [https://docs.python.org/3/library/constants.html#None]) – tracks to add

	at_position (int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None]) – position in tracklist to add tracks

	uris (Iterable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable][NewType [https://docs.python.org/3/library/typing.html#typing.NewType](Uri, str [https://docs.python.org/3/library/stdtypes.html#str])] | None [https://docs.python.org/3/library/constants.html#None]) – list of URIs for tracks to add

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list][TlTrack]

New in version 1.0: The uris argument.

Deprecated since version 1.0: The tracks argument. Use uris.

	
TracklistController.remove(criteria) → list [https://docs.python.org/3/library/stdtypes.html#list][TlTrack]

	Remove the matching tracks from the tracklist.

Uses filter() to lookup the tracks to remove.

Triggers the mopidy.core.CoreListener.tracklist_changed() event.

Returns the removed tracks.

	Parameters:

	criteria (dict [https://docs.python.org/3/library/stdtypes.html#dict][Literal [https://docs.python.org/3/library/typing.html#typing.Literal]['tlid', 'uri', 'name', 'genre', 'comment', 'musicbrainz_id'], Iterable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable][str [https://docs.python.org/3/library/stdtypes.html#str] | int [https://docs.python.org/3/library/functions.html#int]]]) – one or more rules to match by

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list][TlTrack]

	
TracklistController.clear() → None [https://docs.python.org/3/library/constants.html#None]

	Clear the tracklist.

Triggers the mopidy.core.CoreListener.tracklist_changed() event.

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
TracklistController.move(start, end, to_position) → None [https://docs.python.org/3/library/constants.html#None]

	Move the tracks in the slice [start:end] to to_position.

Triggers the mopidy.core.CoreListener.tracklist_changed() event.

	Parameters:

	
	start (int [https://docs.python.org/3/library/functions.html#int]) – position of first track to move

	end (int [https://docs.python.org/3/library/functions.html#int]) – position after last track to move

	to_position (int [https://docs.python.org/3/library/functions.html#int]) – new position for the tracks

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
TracklistController.shuffle(start=None, end=None) → None [https://docs.python.org/3/library/constants.html#None]

	Shuffles the entire tracklist. If start and end is given only
shuffles the slice [start:end].

Triggers the mopidy.core.CoreListener.tracklist_changed() event.

	Parameters:

	
	start (int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None]) – position of first track to shuffle

	end (int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None]) – position after last track to shuffle

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

Current state

	
TracklistController.get_tl_tracks() → list [https://docs.python.org/3/library/stdtypes.html#list][TlTrack]

	Get tracklist as list of mopidy.models.TlTrack.

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list][TlTrack]

	
TracklistController.index(tl_track=None, tlid=None) → int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None]

	The position of the given track in the tracklist.

If neither tl_track or tlid is given we return the index of
the currently playing track.

	Parameters:

	
	tl_track (TlTrack | None [https://docs.python.org/3/library/constants.html#None]) – the track to find the index of

	tlid (int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None]) – TLID of the track to find the index of

	Return type:

	int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None]

New in version 1.1: The tlid parameter

	
TracklistController.get_version() → int [https://docs.python.org/3/library/functions.html#int]

	Get the tracklist version.

Integer which is increased every time the tracklist is changed. Is not
reset before Mopidy is restarted.

	Return type:

	int [https://docs.python.org/3/library/functions.html#int]

	
TracklistController.get_length() → int [https://docs.python.org/3/library/functions.html#int]

	Get length of the tracklist.

	Return type:

	int [https://docs.python.org/3/library/functions.html#int]

	
TracklistController.get_tracks() → list [https://docs.python.org/3/library/stdtypes.html#list][Track]

	Get tracklist as list of mopidy.models.Track.

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list][Track]

	
TracklistController.slice(start, end) → list [https://docs.python.org/3/library/stdtypes.html#list][TlTrack]

	Returns a slice of the tracklist, limited by the given start and end
positions.

	Parameters:

	
	start (int [https://docs.python.org/3/library/functions.html#int]) – position of first track to include in slice

	end (int [https://docs.python.org/3/library/functions.html#int]) – position after last track to include in slice

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list][TlTrack]

	
TracklistController.filter(criteria) → list [https://docs.python.org/3/library/stdtypes.html#list][TlTrack]

	Filter the tracklist by the given criteria.

Each rule in the criteria consists of a model field and a list of
values to compare it against. If the model field matches any of the
values, it may be returned.

Only tracks that match all the given criteria are returned.

Examples:

Returns tracks with TLIDs 1, 2, 3, or 4 (tracklist ID)
filter({'tlid': [1, 2, 3, 4]})

Returns track with URIs 'xyz' or 'abc'
filter({'uri': ['xyz', 'abc']})

Returns track with a matching TLIDs (1, 3 or 6) and a
matching URI ('xyz' or 'abc')
filter({'tlid': [1, 3, 6], 'uri': ['xyz', 'abc']})

	Parameters:

	criteria (dict [https://docs.python.org/3/library/stdtypes.html#dict][Literal [https://docs.python.org/3/library/typing.html#typing.Literal]['tlid', 'uri', 'name', 'genre', 'comment', 'musicbrainz_id'], Iterable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable][str [https://docs.python.org/3/library/stdtypes.html#str] | int [https://docs.python.org/3/library/functions.html#int]]]) – one or more rules to match by

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list][TlTrack]

Future state

	
TracklistController.get_eot_tlid() → int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None]

	The TLID of the track that will be played after the current track.

Not necessarily the same TLID as returned by get_next_tlid().
:rtype: int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None]

New in version 1.1.

	
TracklistController.get_next_tlid() → int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None]

	The tlid of the track that will be played if calling
mopidy.core.PlaybackController.next().

For normal playback this is the next track in the tracklist. If repeat
is enabled the next track can loop around the tracklist. When random is
enabled this should be a random track, all tracks should be played once
before the tracklist repeats.
:rtype: int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None]

New in version 1.1.

	
TracklistController.get_previous_tlid() → int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None]

	Returns the TLID of the track that will be played if calling
mopidy.core.PlaybackController.previous().

For normal playback this is the previous track in the tracklist. If
random and/or consume is enabled it should return the current track
instead.
:rtype: int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None]

New in version 1.1.

	
TracklistController.eot_track(tl_track) → TlTrack | None [https://docs.python.org/3/library/constants.html#None]

	The track that will be played after the given track.

Not necessarily the same track as next_track().

Deprecated since version 3.0: Use get_eot_tlid() instead.

	Parameters:

	tl_track (TlTrack | None [https://docs.python.org/3/library/constants.html#None]) – the reference track

	Return type:

	TlTrack | None [https://docs.python.org/3/library/constants.html#None]

	
TracklistController.next_track(tl_track) → TlTrack | None [https://docs.python.org/3/library/constants.html#None]

	The track that will be played if calling
mopidy.core.PlaybackController.next().

For normal playback this is the next track in the tracklist. If repeat
is enabled the next track can loop around the tracklist. When random is
enabled this should be a random track, all tracks should be played once
before the tracklist repeats.

Deprecated since version 3.0: Use get_next_tlid() instead.

	Parameters:

	tl_track (TlTrack | None [https://docs.python.org/3/library/constants.html#None]) – the reference track

	Return type:

	TlTrack | None [https://docs.python.org/3/library/constants.html#None]

	
TracklistController.previous_track(tl_track) → TlTrack | None [https://docs.python.org/3/library/constants.html#None]

	Returns the track that will be played if calling
mopidy.core.PlaybackController.previous().

For normal playback this is the previous track in the tracklist. If
random and/or consume is enabled it should return the current track
instead.

Deprecated since version 3.0: Use get_previous_tlid() instead.

	Parameters:

	tl_track (TlTrack | None [https://docs.python.org/3/library/constants.html#None]) – the reference track

	Return type:

	TlTrack | None [https://docs.python.org/3/library/constants.html#None]

Options

	
TracklistController.get_consume() → bool [https://docs.python.org/3/library/functions.html#bool]

	Get consume mode.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	True
	Tracks are removed from the tracklist when they have been played.

	False
	Tracks are not removed from the tracklist.

	
TracklistController.set_consume(value) → None [https://docs.python.org/3/library/constants.html#None]

	Set consume mode.

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	True
	Tracks are removed from the tracklist when they have been played.

	False
	Tracks are not removed from the tracklist.

	
TracklistController.get_random() → bool [https://docs.python.org/3/library/functions.html#bool]

	Get random mode.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	True
	Tracks are selected at random from the tracklist.

	False
	Tracks are played in the order of the tracklist.

	
TracklistController.set_random(value) → None [https://docs.python.org/3/library/constants.html#None]

	Set random mode.

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	True
	Tracks are selected at random from the tracklist.

	False
	Tracks are played in the order of the tracklist.

	
TracklistController.get_repeat() → bool [https://docs.python.org/3/library/functions.html#bool]

	Get repeat mode.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	True
	The tracklist is played repeatedly.

	False
	The tracklist is played once.

	
TracklistController.set_repeat(value) → None [https://docs.python.org/3/library/constants.html#None]

	Set repeat mode.

To repeat a single track, set both repeat and single.

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	True
	The tracklist is played repeatedly.

	False
	The tracklist is played once.

	
TracklistController.get_single() → bool [https://docs.python.org/3/library/functions.html#bool]

	Get single mode.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	True
	Playback is stopped after current song, unless in repeat mode.

	False
	Playback continues after current song.

	
TracklistController.set_single(value) → None [https://docs.python.org/3/library/constants.html#None]

	Set single mode.

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	True
	Playback is stopped after current song, unless in repeat mode.

	False
	Playback continues after current song.

Playback controller

	
class mopidy.core.PlaybackController(audio, backends, core) → None [https://docs.python.org/3/library/constants.html#None]

	

Playback control

	
PlaybackController.play(tlid=None) → None [https://docs.python.org/3/library/constants.html#None]

	Play a track from the tracklist, specified by the tracklist ID.

Note that the track must already be in the tracklist.

If no tracklist ID is provided, resume playback of the currently
active track.

	Parameters:

	tlid (int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None]) – Tracklist ID of the track to play

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
PlaybackController.next() → None [https://docs.python.org/3/library/constants.html#None]

	Change to the next track.

The current playback state will be kept. If it was playing, playing
will continue. If it was paused, it will still be paused, etc.

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
PlaybackController.previous() → None [https://docs.python.org/3/library/constants.html#None]

	Change to the previous track.

The current playback state will be kept. If it was playing, playing
will continue. If it was paused, it will still be paused, etc.

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
PlaybackController.stop() → None [https://docs.python.org/3/library/constants.html#None]

	Stop playing.

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
PlaybackController.pause() → None [https://docs.python.org/3/library/constants.html#None]

	Pause playback.

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
PlaybackController.resume() → None [https://docs.python.org/3/library/constants.html#None]

	If paused, resume playing the current track.

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
PlaybackController.seek(time_position) → bool [https://docs.python.org/3/library/functions.html#bool]

	Seeks to time position given in milliseconds.

Returns True if successful, else False.

	Parameters:

	time_position (NewType [https://docs.python.org/3/library/typing.html#typing.NewType](DurationMs, int [https://docs.python.org/3/library/functions.html#int])) – time position in milliseconds

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

Current track

	
PlaybackController.get_current_tl_track() → TlTrack | None [https://docs.python.org/3/library/constants.html#None]

	Get the currently playing or selected track.

Returns a mopidy.models.TlTrack or None.

	Return type:

	TlTrack | None [https://docs.python.org/3/library/constants.html#None]

	
PlaybackController.get_current_track() → Track | None [https://docs.python.org/3/library/constants.html#None]

	Get the currently playing or selected track.

Extracted from get_current_tl_track() for convenience.

Returns a mopidy.models.Track or None.

	Return type:

	Track | None [https://docs.python.org/3/library/constants.html#None]

	
PlaybackController.get_current_tlid() → int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None]

	Get the currently playing or selected TLID.

Extracted from get_current_tl_track() for convenience.

Returns a int [https://docs.python.org/3/library/functions.html#int] or None.
:rtype: int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None]

New in version 1.1.

	
PlaybackController.get_stream_title() → str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None]

	Get the current stream title or None.

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None]

	
PlaybackController.get_time_position() → DurationMs

	Get time position in milliseconds.

	Return type:

	NewType [https://docs.python.org/3/library/typing.html#typing.NewType](DurationMs, int [https://docs.python.org/3/library/functions.html#int])

Playback states

	
PlaybackController.get_state() → PlaybackState

	Get The playback state.

	Return type:

	PlaybackState

	
PlaybackController.set_state(new_state) → None [https://docs.python.org/3/library/constants.html#None]

	Set the playback state.

Must be PLAYING, PAUSED, or STOPPED.

Possible states and transitions:

[image: digraph state_transitions { "STOPPED" -> "PLAYING" [label="play"] "STOPPED" -> "PAUSED" [label="pause"] "PLAYING" -> "STOPPED" [label="stop"] "PLAYING" -> "PAUSED" [label="pause"] "PLAYING" -> "PLAYING" [label="play"] }]

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

”PAUSED” -> “PLAYING” [label=”resume”]
“PAUSED” -> “STOPPED” [label=”stop”]

	
class mopidy.core.PlaybackState

	
	
STOPPED = 'stopped'

	

	
PLAYING = 'playing'

	

	
PAUSED = 'paused'

	

Library controller

	
class mopidy.core.LibraryController

	

	
LibraryController.browse(uri) → list [https://docs.python.org/3/library/stdtypes.html#list][Ref]

	Browse directories and tracks at the given uri.

uri is a string which represents some directory belonging to a
backend. To get the intial root directories for backends pass
None as the URI.

Returns a list of mopidy.models.Ref objects for the
directories and tracks at the given uri.

The Ref objects representing tracks keep the
track’s original URI. A matching pair of objects can look like this:

Track(uri='dummy:/foo.mp3', name='foo', artists=..., album=...)
Ref.track(uri='dummy:/foo.mp3', name='foo')

The Ref objects representing directories have
backend specific URIs. These are opaque values, so no one but the
backend that created them should try and derive any meaning from them.
The only valid exception to this is checking the scheme, as it is used
to route browse requests to the correct backend.

For example, the dummy library’s /bar directory could be returned
like this:

Ref.directory(uri='dummy:directory:/bar', name='bar')

	Parameters:

	uri (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][NewType [https://docs.python.org/3/library/typing.html#typing.NewType](Uri, str [https://docs.python.org/3/library/stdtypes.html#str])]) – URI to browse

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list][Ref]

New in version 0.18.

	
LibraryController.search(query, uris=None, exact=False) → list [https://docs.python.org/3/library/stdtypes.html#list][SearchResult]

	Search the library for tracks where field contains values.

If uris is given, the search is limited to results from within the
URI roots. For example passing uris=['file:'] will limit the search
to the local backend.

Examples:

Returns results matching 'a' in any backend
search({'any': ['a']})

Returns results matching artist 'xyz' in any backend
search({'artist': ['xyz']})

Returns results matching 'a' and 'b' and artist 'xyz' in any
backend
search({'any': ['a', 'b'], 'artist': ['xyz']})

Returns results matching 'a' if within the given URI roots
"file:///media/music" and "spotify:"
search({'any': ['a']}, uris=['file:///media/music', 'spotify:'])

Returns results matching artist 'xyz' and 'abc' in any backend
search({'artist': ['xyz', 'abc']})

	Parameters:

	
	query (dict [https://docs.python.org/3/library/stdtypes.html#dict][Union [https://docs.python.org/3/library/typing.html#typing.Union][Literal [https://docs.python.org/3/library/typing.html#typing.Literal]['uri', 'track_name', 'album', 'artist', 'albumartist', 'composer', 'performer', 'track_no', 'genre', 'date', 'comment', 'disc_no', 'musicbrainz_albumid', 'musicbrainz_artistid', 'musicbrainz_trackid'], Literal [https://docs.python.org/3/library/typing.html#typing.Literal]['any']], Iterable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable][str [https://docs.python.org/3/library/stdtypes.html#str] | int [https://docs.python.org/3/library/functions.html#int]]]) – one or more queries to search for

	uris (Iterable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable][NewType [https://docs.python.org/3/library/typing.html#typing.NewType](Uri, str [https://docs.python.org/3/library/stdtypes.html#str])] | None [https://docs.python.org/3/library/constants.html#None]) – zero or more URI roots to limit the search to

	exact (bool [https://docs.python.org/3/library/functions.html#bool]) – if the search should use exact matching

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list][SearchResult]

New in version 1.0: The exact keyword argument.

	
LibraryController.lookup(uris) → dict [https://docs.python.org/3/library/stdtypes.html#dict][Uri, list [https://docs.python.org/3/library/stdtypes.html#list][Track]]

	Lookup the given URIs.

If the URI expands to multiple tracks, the returned list will contain
them all.

	Parameters:

	uris (Iterable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable][NewType [https://docs.python.org/3/library/typing.html#typing.NewType](Uri, str [https://docs.python.org/3/library/stdtypes.html#str])]) – track URIs

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict][NewType [https://docs.python.org/3/library/typing.html#typing.NewType](Uri, str [https://docs.python.org/3/library/stdtypes.html#str]), list [https://docs.python.org/3/library/stdtypes.html#list][Track]]

	
LibraryController.refresh(uri=None) → None [https://docs.python.org/3/library/constants.html#None]

	Refresh library. Limit to URI and below if an URI is given.

	Parameters:

	uri (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][NewType [https://docs.python.org/3/library/typing.html#typing.NewType](Uri, str [https://docs.python.org/3/library/stdtypes.html#str])]) – directory or track URI

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
LibraryController.get_images(uris) → dict [https://docs.python.org/3/library/stdtypes.html#dict][Uri, tuple [https://docs.python.org/3/library/stdtypes.html#tuple][Image, ...]]

	Lookup the images for the given URIs.

Backends can use this to return image URIs for any URI they know about
be it tracks, albums, playlists. The lookup result is a dictionary
mapping the provided URIs to lists of images.

Unknown URIs or URIs the corresponding backend couldn’t find anything
for will simply return an empty list for that URI.

	Parameters:

	uris (Iterable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable][NewType [https://docs.python.org/3/library/typing.html#typing.NewType](Uri, str [https://docs.python.org/3/library/stdtypes.html#str])]) – list of URIs to find images for

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict][NewType [https://docs.python.org/3/library/typing.html#typing.NewType](Uri, str [https://docs.python.org/3/library/stdtypes.html#str]), tuple [https://docs.python.org/3/library/stdtypes.html#tuple][Image, ... [https://docs.python.org/3/library/constants.html#Ellipsis]]]

New in version 1.0.

	
LibraryController.get_distinct(field, query=None) → set [https://docs.python.org/3/library/stdtypes.html#set][Any [https://docs.python.org/3/library/typing.html#typing.Any]]

	List distinct values for a given field from the library.

This has mainly been added to support the list commands the MPD
protocol supports in a more sane fashion. Other frontends are not
recommended to use this method.

Returns set of values corresponding to the requested field type.

	Parameters:

	
	field (Literal [https://docs.python.org/3/library/typing.html#typing.Literal]['uri', 'track_name', 'album', 'artist', 'albumartist', 'composer', 'performer', 'track_no', 'genre', 'date', 'comment', 'disc_no', 'musicbrainz_albumid', 'musicbrainz_artistid', 'musicbrainz_trackid']) – Any one of uri, track_name, album,
artist, albumartist, composer, performer,
track_no, genre, date, comment, disc_no,
musicbrainz_albumid, musicbrainz_artistid, or
musicbrainz_trackid.

	query (dict [https://docs.python.org/3/library/stdtypes.html#dict][Union [https://docs.python.org/3/library/typing.html#typing.Union][Literal [https://docs.python.org/3/library/typing.html#typing.Literal]['uri', 'track_name', 'album', 'artist', 'albumartist', 'composer', 'performer', 'track_no', 'genre', 'date', 'comment', 'disc_no', 'musicbrainz_albumid', 'musicbrainz_artistid', 'musicbrainz_trackid'], Literal [https://docs.python.org/3/library/typing.html#typing.Literal]['any']], Iterable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable][str [https://docs.python.org/3/library/stdtypes.html#str] | int [https://docs.python.org/3/library/functions.html#int]]] | None [https://docs.python.org/3/library/constants.html#None]) – Query to use for limiting results, see
search() for details about the query format.

	Return type:

	set [https://docs.python.org/3/library/stdtypes.html#set][Any [https://docs.python.org/3/library/typing.html#typing.Any]]

New in version 1.0.

Playlists controller

	
class mopidy.core.PlaylistsController

	

	
PlaylistsController.get_uri_schemes() → list [https://docs.python.org/3/library/stdtypes.html#list][UriScheme]

	Get the list of URI schemes that support playlists.
:rtype: list [https://docs.python.org/3/library/stdtypes.html#list][NewType [https://docs.python.org/3/library/typing.html#typing.NewType](UriScheme, str [https://docs.python.org/3/library/stdtypes.html#str])]

New in version 2.0.

Fetching

	
PlaylistsController.as_list() → list [https://docs.python.org/3/library/stdtypes.html#list][Ref]

	Get a list of the currently available playlists.

Returns a list of Ref objects referring to the
playlists. In other words, no information about the playlists’ content
is given.
:rtype: list [https://docs.python.org/3/library/stdtypes.html#list][Ref]

New in version 1.0.

	
PlaylistsController.get_items(uri) → list [https://docs.python.org/3/library/stdtypes.html#list][Ref] | None [https://docs.python.org/3/library/constants.html#None]

	Get the items in a playlist specified by uri.

Returns a list of Ref objects referring to the
playlist’s items.

If a playlist with the given uri doesn’t exist, it returns
None.
:rtype: list [https://docs.python.org/3/library/stdtypes.html#list][Ref] | None [https://docs.python.org/3/library/constants.html#None]

New in version 1.0.

	
PlaylistsController.lookup(uri) → Playlist | None [https://docs.python.org/3/library/constants.html#None]

	Lookup playlist with given URI in both the set of playlists and in any
other playlist sources. Returns None if not found.

	Parameters:

	uri (NewType [https://docs.python.org/3/library/typing.html#typing.NewType](Uri, str [https://docs.python.org/3/library/stdtypes.html#str])) – playlist URI

	Return type:

	Playlist | None [https://docs.python.org/3/library/constants.html#None]

	
PlaylistsController.refresh(uri_scheme=None) → None [https://docs.python.org/3/library/constants.html#None]

	Refresh the playlists in playlists.

If uri_scheme is None, all backends are asked to refresh.
If uri_scheme is an URI scheme handled by a backend, only that
backend is asked to refresh. If uri_scheme doesn’t match any
current backend, nothing happens.

	Parameters:

	uri_scheme (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][NewType [https://docs.python.org/3/library/typing.html#typing.NewType](UriScheme, str [https://docs.python.org/3/library/stdtypes.html#str])]) – limit to the backend matching the URI scheme

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

Manipulating

	
PlaylistsController.create(name, uri_scheme=None) → Playlist | None [https://docs.python.org/3/library/constants.html#None]

	Create a new playlist.

If uri_scheme matches an URI scheme handled by a current backend,
that backend is asked to create the playlist. If uri_scheme is
None or doesn’t match a current backend, the first backend is
asked to create the playlist.

All new playlists must be created by calling this method, and not
by creating new instances of mopidy.models.Playlist.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – name of the new playlist

	uri_scheme (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][NewType [https://docs.python.org/3/library/typing.html#typing.NewType](UriScheme, str [https://docs.python.org/3/library/stdtypes.html#str])]) – use the backend matching the URI scheme

	Return type:

	Playlist | None [https://docs.python.org/3/library/constants.html#None]

	
PlaylistsController.save(playlist) → Playlist | None [https://docs.python.org/3/library/constants.html#None]

	Save the playlist.

For a playlist to be saveable, it must have the uri attribute set.
You must not set the uri atribute yourself, but use playlist
objects returned by create() or retrieved from playlists,
which will always give you saveable playlists.

The method returns the saved playlist. The return playlist may differ
from the saved playlist. E.g. if the playlist name was changed, the
returned playlist may have a different URI. The caller of this method
must throw away the playlist sent to this method, and use the
returned playlist instead.

If the playlist’s URI isn’t set or doesn’t match the URI scheme of a
current backend, nothing is done and None is returned.

	Parameters:

	playlist (Playlist) – the playlist

	Return type:

	Playlist | None [https://docs.python.org/3/library/constants.html#None]

	
PlaylistsController.delete(uri) → bool [https://docs.python.org/3/library/functions.html#bool]

	Delete playlist identified by the URI.

If the URI doesn’t match the URI schemes handled by the current
backends, nothing happens.

Returns True if deleted, False otherwise.

	Parameters:

	uri (NewType [https://docs.python.org/3/library/typing.html#typing.NewType](Uri, str [https://docs.python.org/3/library/stdtypes.html#str])) – URI of the playlist to delete

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

Changed in version 2.2: Return type defined.

Mixer controller

	
class mopidy.core.MixerController

	

	
MixerController.get_mute() → bool [https://docs.python.org/3/library/functions.html#bool] | None [https://docs.python.org/3/library/constants.html#None]

	Get mute state.

True if muted, False unmuted, None if
unknown.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool] | None [https://docs.python.org/3/library/constants.html#None]

	
MixerController.set_mute(mute) → bool [https://docs.python.org/3/library/functions.html#bool]

	Set mute state.

True to mute, False to unmute.

Returns True if call is successful, otherwise False.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
MixerController.get_volume() → Percentage | None [https://docs.python.org/3/library/constants.html#None]

	Get the volume.

Integer in range [0..100] or None if unknown.

The volume scale is linear.

	Return type:

	Optional [https://docs.python.org/3/library/typing.html#typing.Optional][NewType [https://docs.python.org/3/library/typing.html#typing.NewType](Percentage, int [https://docs.python.org/3/library/functions.html#int])]

	
MixerController.set_volume(volume) → bool [https://docs.python.org/3/library/functions.html#bool]

	Set the volume.

The volume is defined as an integer in range [0..100].

The volume scale is linear.

Returns True if call is successful, otherwise False.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

History controller

	
class mopidy.core.HistoryController

	

	
HistoryController.get_history() → list [https://docs.python.org/3/library/stdtypes.html#list][tuple [https://docs.python.org/3/library/stdtypes.html#tuple][int [https://docs.python.org/3/library/functions.html#int], Ref]]

	Get the track history.

Returns a list of two-tuples with timestamp and a reference to the track.
The timestamps are milliseconds since epoch.

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list][tuple [https://docs.python.org/3/library/stdtypes.html#tuple][int [https://docs.python.org/3/library/functions.html#int], Ref]]

	
HistoryController.get_length() → int [https://docs.python.org/3/library/functions.html#int]

	Get the number of tracks in the history.

	Return type:

	int [https://docs.python.org/3/library/functions.html#int]

Core events

	
class mopidy.core.CoreListener

	Marker interface for recipients of events sent by the core actor.

Any Pykka actor that mixes in this class will receive calls to the methods
defined here when the corresponding events happen in the core actor. This
interface is used both for looking up what actors to notify of the events,
and for providing default implementations for those listeners that are not
interested in all events.

	
mute_changed(mute) → None [https://docs.python.org/3/library/constants.html#None]

	Called whenever the mute state is changed.

MAY be implemented by actor.

	Parameters:

	mute (boolean) – the new mute state

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
on_event(event, **kwargs) → None [https://docs.python.org/3/library/constants.html#None]

	Called on all events.

MAY be implemented by actor. By default, this method forwards the
event to the specific event methods.

	Parameters:

	
	event (Literal [https://docs.python.org/3/library/typing.html#typing.Literal]['track_playback_paused', 'track_playback_resumed', 'track_playback_started', 'track_playback_ended', 'playback_state_changed', 'tracklist_changed', 'playlists_loaded', 'playlist_changed', 'playlist_deleted', 'options_changed', 'volume_changed', 'mute_changed', 'seeked', 'stream_title_changed']) – the event name

	kwargs (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – any other arguments to the specific event handlers

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
options_changed() → None [https://docs.python.org/3/library/constants.html#None]

	Called whenever an option is changed.

MAY be implemented by actor.

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
playback_state_changed(old_state, new_state) → None [https://docs.python.org/3/library/constants.html#None]

	Called whenever playback state is changed.

MAY be implemented by actor.

	Parameters:

	
	old_state (string from mopidy.core.PlaybackState field) – the state before the change

	new_state (string from mopidy.core.PlaybackState field) – the state after the change

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
playlist_changed(playlist) → None [https://docs.python.org/3/library/constants.html#None]

	Called whenever a playlist is changed.

MAY be implemented by actor.

	Parameters:

	playlist (mopidy.models.Playlist) – the changed playlist

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
playlist_deleted(uri) → None [https://docs.python.org/3/library/constants.html#None]

	Called whenever a playlist is deleted.

MAY be implemented by actor.

	Parameters:

	uri (string) – the URI of the deleted playlist

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
playlists_loaded() → None [https://docs.python.org/3/library/constants.html#None]

	Called when playlists are loaded or refreshed.

MAY be implemented by actor.

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
seeked(time_position) → None [https://docs.python.org/3/library/constants.html#None]

	Called whenever the time position changes by an unexpected amount, e.g.
at seek to a new time position.

MAY be implemented by actor.

	Parameters:

	time_position (int [https://docs.python.org/3/library/functions.html#int]) – the position that was seeked to in milliseconds

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
static send(event, **kwargs) → None [https://docs.python.org/3/library/constants.html#None]

	Helper to allow calling of core listener events.

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
stream_title_changed(title) → None [https://docs.python.org/3/library/constants.html#None]

	Called whenever the currently playing stream title changes.

MAY be implemented by actor.

	Parameters:

	title (string) – the new stream title

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
track_playback_ended(tl_track, time_position) → None [https://docs.python.org/3/library/constants.html#None]

	Called whenever playback of a track ends.

MAY be implemented by actor.

	Parameters:

	
	tl_track (TlTrack) – the track that was played before playback stopped

	time_position (NewType [https://docs.python.org/3/library/typing.html#typing.NewType](DurationMs, int [https://docs.python.org/3/library/functions.html#int])) – the time position in milliseconds

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
track_playback_paused(tl_track, time_position) → None [https://docs.python.org/3/library/constants.html#None]

	Called whenever track playback is paused.

MAY be implemented by actor.

	Parameters:

	
	tl_track (TlTrack) – the track that was playing when playback paused

	time_position (NewType [https://docs.python.org/3/library/typing.html#typing.NewType](DurationMs, int [https://docs.python.org/3/library/functions.html#int])) – the time position in milliseconds

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
track_playback_resumed(tl_track, time_position) → None [https://docs.python.org/3/library/constants.html#None]

	Called whenever track playback is resumed.

MAY be implemented by actor.

	Parameters:

	
	tl_track (TlTrack) – the track that was playing when playback resumed

	time_position (NewType [https://docs.python.org/3/library/typing.html#typing.NewType](DurationMs, int [https://docs.python.org/3/library/functions.html#int])) – the time position in milliseconds

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
track_playback_started(tl_track) → None [https://docs.python.org/3/library/constants.html#None]

	Called whenever a new track starts playing.

MAY be implemented by actor.

	Parameters:

	tl_track (TlTrack) – the track that just started playing

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
tracklist_changed() → None [https://docs.python.org/3/library/constants.html#None]

	Called whenever the tracklist is changed.

MAY be implemented by actor.

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
volume_changed(volume) → None [https://docs.python.org/3/library/constants.html#None]

	Called whenever the volume is changed.

MAY be implemented by actor.

	Parameters:

	volume (int [https://docs.python.org/3/library/functions.html#int]) – the new volume in the range [0..100]

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

Frontend API

The following requirements applies to any frontend implementation:

	A frontend MAY do mostly whatever it wants to, including creating threads,
opening TCP ports and exposing Mopidy for a group of clients.

	A frontend MUST implement at least one Pykka [https://pykka.readthedocs.io/] actor, called the “main actor” from here
on.

	The main actor MUST accept two constructor arguments:

	config, which is a dict structure with the entire Mopidy configuration.

	core, which will be an ActorProxy for
the core actor. This object gives access to the full mopidy.core — Core API.

	It MAY use additional actors to implement whatever it does, and using actors
in frontend implementations is encouraged.

	The frontend is enabled if the extension it is part of is enabled. See
Extension development for more information.

	The main actor MUST be able to start and stop the frontend when the main
actor is started and stopped.

	The frontend MAY require additional config values to be set for it to work.

	Such config values MUST be documented.

	The main actor MUST raise the mopidy.exceptions.FrontendError with a
descriptive error message if the defined config values are not adequate for
the frontend to work properly.

	Any actor which is part of the frontend MAY implement the
mopidy.core.CoreListener interface to receive notification of the
specified events.

Frontend implementations

See the extension registry [https://mopidy.com/ext/].

mopidy.backend — Backend API

The backend API is the interface that must be implemented when you create a
backend. If you are working on a frontend and need to access the backends, see
the mopidy.core — Core API instead.

URIs and routing of requests to the backend

When Mopidy’s core layer is processing a client request, it routes the request
to one or more appropriate backends based on the URIs of the objects the
request touches on. The objects’ URIs are compared with the backends’
uri_schemes to select the relevant backends.

An often used pattern when implementing Mopidy backends is to create your own
URI scheme which you use for all tracks, playlists, etc. related to your
backend. In most cases the Mopidy URI is translated to an actual URI that
GStreamer knows how to play right before playback. For example:

	Spotify already has its own URI scheme (spotify:track:...,
spotify:playlist:..., etc.) used throughout their applications, and thus
Mopidy-Spotify simply uses the same URI scheme.

	Mopidy-SoundCloud created it’s own URI scheme, after the model of Spotify,
and uses URIs of the following forms: soundcloud:search,
soundcloud:user-..., soundcloud:exp-..., and soundcloud:set-....
Playback is handled by converting the custom soundcloud:.. URIs to
http:// URIs immediately before they are passed on to GStreamer for
playback.

	Mopidy differentiates between file://... URIs handled by
Mopidy-Stream and local:... URIs handled by Mopidy-Local.
Mopidy-Stream can play file://... URIs pointing to tracks and
playlists located anywhere on your system, but it doesn’t know a thing about
the object before you play it. On the other hand, Mopidy-Local scans a
predefined local/media_dir to build a meta data library of all
known tracks. It is thus limited to playing tracks residing in the media
library, but can provide additional features like directory browsing and
search. In other words, we have two different ways of playing local music,
handled by two different backends, and have thus created two different URI
schemes to separate their handling. The local:... URIs are converted to
file://... URIs immediately before they are passed on to GStreamer for
playback.

If there isn’t an existing URI scheme that fits for your backend’s purpose,
you should create your own, and name it after your extension’s
ext_name. Care should be taken not to conflict
with already in use URI schemes. It is also recommended to design the format
such that tracks, playlists and other entities can be distinguished easily.

However, it’s important to note that outside of the backend that created them,
URIs are opaque values that neither Mopidy’s core layer or Mopidy frontends
should attempt to derive any meaning from. The only valid exception to this is
checking the scheme.

Backend class

	
class mopidy.backend.Backend

	Backend API.

If the backend has problems during initialization it should raise
mopidy.exceptions.BackendError with a descriptive error message.
This will make Mopidy print the error message and exit so that the user can
fix the issue.

	Parameters:

	
	config – the entire Mopidy configuration

	audio – actor proxy for the audio subsystem

	
audio: AudioProxy

	Actor proxy to an instance of mopidy.audio.Audio.

Should be passed to the backend constructor as the kwarg audio,
which will then set this field.

	
library: LibraryProvider | None = None

	The library provider. An instance of
LibraryProvider, or None if
the backend doesn’t provide a library.

	
ping() → bool [https://docs.python.org/3/library/functions.html#bool]

	Called to check if the actor is still alive.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
playback: PlaybackProvider | None [https://docs.python.org/3/library/constants.html#None] = None

	The playback provider. An instance of
PlaybackProvider, or None if
the backend doesn’t provide playback.

	
playlists: PlaylistsProvider | None [https://docs.python.org/3/library/constants.html#None] = None

	The playlists provider. An instance of
PlaylistsProvider, or class:None if
the backend doesn’t provide playlists.

	
uri_schemes: ClassVar [https://docs.python.org/3/library/typing.html#typing.ClassVar][list [https://docs.python.org/3/library/stdtypes.html#list][NewType [https://docs.python.org/3/library/typing.html#typing.NewType](UriScheme, str [https://docs.python.org/3/library/stdtypes.html#str])]] = []

	List of URI schemes this backend can handle.

Playback provider

	
class mopidy.backend.PlaybackProvider(audio, backend) → None [https://docs.python.org/3/library/constants.html#None]

	A playback provider provides audio playback control.

	Parameters:

	
	audio (AudioProxy) – the audio actor

	backend (Backend) – the backend

	
change_track(track) → bool [https://docs.python.org/3/library/functions.html#bool]

	Switch to provided track.

MAY be reimplemented by subclass.

It is unlikely it makes sense for any backends to override
this. For most practical purposes it should be considered an internal
call between backends and core that backend authors should not touch.

The default implementation will call translate_uri() which
is what you want to implement.

	Parameters:

	track (Track) – the track to play

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
get_time_position() → DurationMs

	Get the current time position in milliseconds.

MAY be reimplemented by subclass.

	Return type:

	NewType [https://docs.python.org/3/library/typing.html#typing.NewType](DurationMs, int [https://docs.python.org/3/library/functions.html#int])

	
is_live(uri) → bool [https://docs.python.org/3/library/functions.html#bool]

	Decide if the URI should be treated as a live stream or not.

MAY be reimplemented by subclass.

Playing a source as a live stream disables buffering, which reduces
latency before playback starts, and discards data when paused.

	Parameters:

	uri (NewType [https://docs.python.org/3/library/typing.html#typing.NewType](Uri, str [https://docs.python.org/3/library/stdtypes.html#str])) – the URI

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
on_source_setup(source) → None [https://docs.python.org/3/library/constants.html#None]

	Called when a new GStreamer source is created, allowing us to configure
the source. This runs in the audio thread so should not block.

MAY be reimplemented by subclass.

	Parameters:

	source (Element) – the GStreamer source element

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

New in version 3.4.

	
pause() → bool [https://docs.python.org/3/library/functions.html#bool]

	Pause playback.

MAY be reimplemented by subclass.

Returns True if successful, else False.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
play() → bool [https://docs.python.org/3/library/functions.html#bool]

	Start playback.

MAY be reimplemented by subclass.

Returns True if successful, else False.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
prepare_change() → None [https://docs.python.org/3/library/constants.html#None]

	Indicate that an URI change is about to happen.

MAY be reimplemented by subclass.

It is extremely unlikely it makes sense for any backends to override
this. For most practical purposes it should be considered an internal
call between backends and core that backend authors should not touch.

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
resume() → bool [https://docs.python.org/3/library/functions.html#bool]

	Resume playback at the same time position playback was paused.

MAY be reimplemented by subclass.

Returns True if successful, else False.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
seek(time_position) → bool [https://docs.python.org/3/library/functions.html#bool]

	Seek to a given time position.

MAY be reimplemented by subclass.

Returns True if successful, else False.

	Parameters:

	time_position (NewType [https://docs.python.org/3/library/typing.html#typing.NewType](DurationMs, int [https://docs.python.org/3/library/functions.html#int])) – time position in milliseconds

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
should_download(uri) → bool [https://docs.python.org/3/library/functions.html#bool]

	Attempt progressive download buffering for the URI or not.

MAY be reimplemented by subclass.

When streaming a fixed length file, the entire file can be buffered
to improve playback performance.

	Parameters:

	uri (NewType [https://docs.python.org/3/library/typing.html#typing.NewType](Uri, str [https://docs.python.org/3/library/stdtypes.html#str])) – the URI

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
stop() → bool [https://docs.python.org/3/library/functions.html#bool]

	Stop playback.

MAY be reimplemented by subclass.

Should not be used for tracking if tracks have been played or when we
are done playing them.

Returns True if successful, else False.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
translate_uri(uri) → Uri | None [https://docs.python.org/3/library/constants.html#None]

	Convert custom URI scheme to real playable URI.

MAY be reimplemented by subclass.

This is very likely the only thing you need to override as a backend
author. Typically this is where you convert any Mopidy specific URI
to a real URI and then return it. If you can’t convert the URI just
return None.

	Parameters:

	uri (NewType [https://docs.python.org/3/library/typing.html#typing.NewType](Uri, str [https://docs.python.org/3/library/stdtypes.html#str])) – the URI to translate

	Return type:

	Optional [https://docs.python.org/3/library/typing.html#typing.Optional][NewType [https://docs.python.org/3/library/typing.html#typing.NewType](Uri, str [https://docs.python.org/3/library/stdtypes.html#str])]

Playlists provider

	
class mopidy.backend.PlaylistsProvider(backend) → None [https://docs.python.org/3/library/constants.html#None]

	A playlist provider exposes a collection of playlists.

The methods can create/change/delete playlists in this collection, and
lookup of any playlist the backend knows about.

	Parameters:

	backend (Backend) – backend the controller is a part of

	
as_list() → list [https://docs.python.org/3/library/stdtypes.html#list][Ref]

	Get a list of the currently available playlists.

Returns a list of Ref objects referring to the
playlists. In other words, no information about the playlists’ content
is given.
:rtype: list [https://docs.python.org/3/library/stdtypes.html#list][Ref]

New in version 1.0.

	
create(name) → Playlist | None [https://docs.python.org/3/library/constants.html#None]

	Create a new empty playlist with the given name.

Returns a new playlist with the given name and an URI, or None
on failure.

MUST be implemented by subclass.

	Parameters:

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – name of the new playlist

	Return type:

	Playlist | None [https://docs.python.org/3/library/constants.html#None]

	
delete(uri) → bool [https://docs.python.org/3/library/functions.html#bool]

	Delete playlist identified by the URI.

Returns True if deleted, False otherwise.

MUST be implemented by subclass.

	Parameters:

	uri (NewType [https://docs.python.org/3/library/typing.html#typing.NewType](Uri, str [https://docs.python.org/3/library/stdtypes.html#str])) – URI of the playlist to delete

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

Changed in version 2.2: Return type defined.

	
get_items(uri) → list [https://docs.python.org/3/library/stdtypes.html#list][Ref] | None [https://docs.python.org/3/library/constants.html#None]

	Get the items in a playlist specified by uri.

Returns a list of Ref objects referring to the
playlist’s items.

If a playlist with the given uri doesn’t exist, it returns
None.
:rtype: list [https://docs.python.org/3/library/stdtypes.html#list][Ref] | None [https://docs.python.org/3/library/constants.html#None]

New in version 1.0.

	
lookup(uri) → Playlist | None [https://docs.python.org/3/library/constants.html#None]

	Lookup playlist with given URI in both the set of playlists and in any
other playlist source.

Returns the playlists or None if not found.

MUST be implemented by subclass.

	Parameters:

	uri (NewType [https://docs.python.org/3/library/typing.html#typing.NewType](Uri, str [https://docs.python.org/3/library/stdtypes.html#str])) – playlist URI

	Return type:

	Playlist | None [https://docs.python.org/3/library/constants.html#None]

	
refresh() → None [https://docs.python.org/3/library/constants.html#None]

	Refresh the playlists in playlists.

MUST be implemented by subclass.

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
save(playlist) → Playlist | None [https://docs.python.org/3/library/constants.html#None]

	Save the given playlist.

The playlist must have an uri attribute set. To create a new
playlist with an URI, use create().

Returns the saved playlist or None on failure.

MUST be implemented by subclass.

	Parameters:

	playlist (Playlist) – the playlist to save

	Return type:

	Playlist | None [https://docs.python.org/3/library/constants.html#None]

Library provider

	
class mopidy.backend.LibraryProvider(backend) → None [https://docs.python.org/3/library/constants.html#None]

	A library provider provides a library of music to Mopidy.

	Parameters:

	backend (Backend) – backend the controller is a part of

	
browse(uri) → list [https://docs.python.org/3/library/stdtypes.html#list][Ref]

	See mopidy.core.LibraryController.browse().

If you implement this method, make sure to also set
root_directory.

MAY be implemented by subclass.

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list][Ref]

	
get_distinct(field, query=None) → set [https://docs.python.org/3/library/stdtypes.html#set][str [https://docs.python.org/3/library/stdtypes.html#str]]

	See mopidy.core.LibraryController.get_distinct().

MAY be implemented by subclass.

Default implementation will simply return an empty set.

Note that backends should always return an empty set for unexpected
field types.

	Return type:

	set [https://docs.python.org/3/library/stdtypes.html#set][str [https://docs.python.org/3/library/stdtypes.html#str]]

	
get_images(uris) → dict [https://docs.python.org/3/library/stdtypes.html#dict][Uri, list [https://docs.python.org/3/library/stdtypes.html#list][Image]]

	See mopidy.core.LibraryController.get_images().

MAY be implemented by subclass.

Default implementation will simply return an empty dictionary.

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict][NewType [https://docs.python.org/3/library/typing.html#typing.NewType](Uri, str [https://docs.python.org/3/library/stdtypes.html#str]), list [https://docs.python.org/3/library/stdtypes.html#list][Image]]

	
lookup(uri) → list [https://docs.python.org/3/library/stdtypes.html#list][Track]

	See mopidy.core.LibraryController.lookup().

MUST be implemented by subclass if :meth:`lookup_many` is not implemented.
:rtype: list [https://docs.python.org/3/library/stdtypes.html#list][Track]

Deprecated since version 4.0: Implement lookup_many() instead. If lookup_many() is
implemented, Mopidy will never call this method on a backend.

	
lookup_many(uris) → dict [https://docs.python.org/3/library/stdtypes.html#dict][Uri, list [https://docs.python.org/3/library/stdtypes.html#list][Track]]

	See mopidy.core.LibraryController.lookup().

MUST be implemented by subclass.

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict][NewType [https://docs.python.org/3/library/typing.html#typing.NewType](Uri, str [https://docs.python.org/3/library/stdtypes.html#str]), list [https://docs.python.org/3/library/stdtypes.html#list][Track]]

	
refresh(uri=None) → None [https://docs.python.org/3/library/constants.html#None]

	See mopidy.core.LibraryController.refresh().

MAY be implemented by subclass.

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
root_directory: Ref | None [https://docs.python.org/3/library/constants.html#None] = None

	mopidy.models.Ref.directory instance with a URI and name set
representing the root of this library’s browse tree. URIs must
use one of the schemes supported by the backend, and name should
be set to a human friendly value.

MUST be set by any class that implements LibraryProvider.browse().

	
search(query, uris=None, exact=False) → SearchResult | None [https://docs.python.org/3/library/constants.html#None]

	See mopidy.core.LibraryController.search().

MAY be implemented by subclass.
:rtype: SearchResult | None [https://docs.python.org/3/library/constants.html#None]

New in version 1.0: The exact param which replaces the old find_exact.

Backend listener

	
class mopidy.backend.BackendListener

	Marker interface for recipients of events sent by the backend actors.

Any Pykka actor that mixes in this class will receive calls to the methods
defined here when the corresponding events happen in a backend actor. This
interface is used both for looking up what actors to notify of the events,
and for providing default implementations for those listeners that are not
interested in all events.

Normally, only the Core actor should mix in this class.

	
playlists_loaded() → None [https://docs.python.org/3/library/constants.html#None]

	Called when playlists are loaded or refreshed.

MAY be implemented by actor.

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
static send(event, **kwargs) → None [https://docs.python.org/3/library/constants.html#None]

	Helper to allow calling of backend listener events.

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

Backend implementations

See the extension registry [https://mopidy.com/ext/].

mopidy.ext – Extension API

If you want to learn how to make Mopidy extensions, read Extension development.

	
class mopidy.ext.Extension

	Base class for Mopidy extensions.

	
classmethod check_attr() → None [https://docs.python.org/3/library/constants.html#None]

	Check if ext_name exist.

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
dist_name: str [https://docs.python.org/3/library/stdtypes.html#str]

	The extension’s distribution name, as registered on PyPI

Example: Mopidy-Soundspot

	
ext_name: str [https://docs.python.org/3/library/stdtypes.html#str]

	The extension’s short name, as used in setup.py and as config section
name

Example: soundspot

	
classmethod get_cache_dir(config) → Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path]

	Get or create cache directory for the extension.

Use this directory to cache data that can safely be thrown away.

	Parameters:

	config (dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]]) – the Mopidy config object

	Return type:

	Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path]

	Returns:

	pathlib.Path

	
get_command() → Command | None [https://docs.python.org/3/library/constants.html#None]

	Command to expose to command line users running mopidy.

	Return type:

	Command | None [https://docs.python.org/3/library/constants.html#None]

	Returns:

	Instance of a Command class.

	
classmethod get_config_dir(config) → Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path]

	Get or create configuration directory for the extension.

	Parameters:

	config (dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]]) – the Mopidy config object

	Return type:

	Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path]

	Returns:

	pathlib.Path

	
get_config_schema() → ConfigSchema

	The extension’s config validation schema.

	Return type:

	ConfigSchema

	Returns:

	ConfigSchema

	
classmethod get_data_dir(config) → Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path]

	Get or create data directory for the extension.

Use this directory to store data that should be persistent.

	Parameters:

	config (dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]]) – the Mopidy config object

	Return type:

	Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path]

	Returns:

	pathlib.Path

	
get_default_config() → str [https://docs.python.org/3/library/stdtypes.html#str]

	The extension’s default config as a text string.

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns:

	str

	
setup(registry) → None [https://docs.python.org/3/library/constants.html#None]

	Register the extension’s components in the extension Registry.

For example, to register a backend:

def setup(self, registry):
 from .backend import SoundspotBackend
 registry.add('backend', SoundspotBackend)

See Registry for a list of registry keys with a special
meaning. Mopidy will instantiate and start any classes registered under
the frontend and backend registry keys.

This method can also be used for other setup tasks not involving the
extension registry.

	Parameters:

	registry (Registry) – the extension registry

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
validate_environment() → None [https://docs.python.org/3/library/constants.html#None]

	Checks if the extension can run in the current environment.

Dependencies described by setup.py are checked by Mopidy, so
you should not check their presence here.

If a problem is found, raise ExtensionError
with a message explaining the issue.

	Raises:

	ExtensionError

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	Returns:

	None

	
version: str [https://docs.python.org/3/library/stdtypes.html#str]

	The extension’s version

Should match the __version__ attribute on the extension’s main
Python module and the version registered on PyPI.

	
class mopidy.ext.ExtensionData(extension, entry_point, config_schema, config_defaults, command)

	
	
command: Command | None [https://docs.python.org/3/library/constants.html#None]

	Alias for field number 4

	
config_defaults: Any [https://docs.python.org/3/library/typing.html#typing.Any]

	Alias for field number 3

	
config_schema: ConfigSchema

	Alias for field number 2

	
entry_point: Any [https://docs.python.org/3/library/typing.html#typing.Any]

	Alias for field number 1

	
extension: Extension

	Alias for field number 0

	
class mopidy.ext.Registry → None [https://docs.python.org/3/library/constants.html#None]

	Registry of components provided by Mopidy extensions.

Passed to the setup() method of all extensions. The
registry can be used like a dict of string keys and lists.

Some keys have a special meaning, including, but not limited to:

	backend is used for Mopidy backend classes.

	frontend is used for Mopidy frontend classes.

Extensions can use the registry for allow other to extend the extension
itself. For example the Mopidy-Local historically used the
local:library key to allow other extensions to register library
providers for Mopidy-Local to use. Extensions should namespace
custom keys with the extension’s ext_name,
e.g. local:foo or http:bar.

	
add(name, entry) → None [https://docs.python.org/3/library/constants.html#None]

	Add a component to the registry.

Multiple classes can be registered to the same name.

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
mopidy.ext.load_extensions() → list [https://docs.python.org/3/library/stdtypes.html#list][ExtensionData]

	Find all installed extensions.

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list][ExtensionData]

	Returns:

	list of installed extensions

	
mopidy.ext.validate_extension_data(data) → bool [https://docs.python.org/3/library/functions.html#bool]

	Verify extension’s dependencies and environment.

	Parameters:

	extensions – an extension to check

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	Returns:

	if extension should be run

HTTP server side API

The Mopidy-HTTP extension comes with an HTTP server to host Mopidy’s
HTTP JSON-RPC API. This web server can also be used by other extensions that need
to expose something over HTTP.

The HTTP server side API can be used to:

	host static files for e.g. a Mopidy client written in pure JavaScript,

	host a Tornado [https://www.tornadoweb.org/] application, or

	host a WSGI application, including e.g. Flask applications.

To host static files using the web server, an extension needs to register a
name and a file path in the extension registry under the http:static key.

To extend the web server with a web application, an extension must register a
name and a factory function in the extension registry under the http:app
key.

For details on how to make a Mopidy extension, see the Extension development
guide.

Static web client example

To serve static files, you just need to register an http:static dictionary
in the extension registry. The dictionary must have two keys: name and
path. The name is used to build the URL the static files will be
served on. By convention, it should be identical with the extension’s
ext_name, like in the following example. The
path tells Mopidy where on the disk the static files are located.

Assuming that the code below is located in the file
mywebclient/__init__.py, the files in the directory
mywebclient/static/ will be made available at /mywebclient/ on
Mopidy’s web server. For example, mywebclient/static/foo.html will be
available at http://localhost:6680/mywebclient/foo.html.

import os

from mopidy import ext

class MyWebClientExtension(ext.Extension):
 ext_name = 'mywebclient'

 def setup(self, registry):
 registry.add('http:static', {
 'name': self.ext_name,
 'path': os.path.join(os.path.dirname(__file__), 'static'),
 })

 # See the Extension API for the full details on this class

Tornado application example

The Mopidy-HTTP extension’s web server is based on the Tornado [https://www.tornadoweb.org/] web framework. Thus, it has first class support
for Tornado request handlers.

In the following example, we create a tornado.web.RequestHandler [https://www.tornadoweb.org/en/stable/web.html#tornado.web.RequestHandler]
called MyRequestHandler that responds to HTTP GET requests with the
string Hello, world! This is Mopidy $version, where it gets the Mopidy
version from Mopidy’s core API.

To hook the request handler into Mopidy’s web server, we must register a
dictionary under the http:app key in the extension registry. The
dictionary must have two keys: name and factory.

The name is used to build the URL the app will be served on. By convention,
it should be identical with the extension’s
ext_name, like in the following example.

The factory must be a function that accepts two arguments, config and
core, respectively a dict structure of Mopidy’s config and a
pykka.ActorProxy [https://pykka.readthedocs.io/en/latest/api/proxies/#pykka.ActorProxy] to the full Mopidy core API. The factory function
must return a list of Tornado request handlers. The URL patterns of the request
handlers should not include the name, as that will be prepended to the URL
patterns by the web server.

When the extension is installed, Mopidy will respond to requests to
http://localhost:6680/mywebclient/ with the string Hello, world! This is
Mopidy $version.

import os

import tornado.web

from mopidy import ext

class MyRequestHandler(tornado.web.RequestHandler):
 def initialize(self, core):
 self.core = core

 def get(self):
 self.write(
 'Hello, world! This is Mopidy %s' %
 self.core.get_version().get())

def my_app_factory(config, core):
 return [
 ('/', MyRequestHandler, {'core': core})
]

class MyWebClientExtension(ext.Extension):
 ext_name = 'mywebclient'

 def setup(self, registry):
 registry.add('http:app', {
 'name': self.ext_name,
 'factory': my_app_factory,
 })

 # See the Extension API for the full details on this class

WSGI application example

WSGI applications are second-class citizens on Mopidy’s HTTP server. The WSGI
applications are run inside Tornado, which is based on non-blocking I/O and a
single event loop. In other words, your WSGI applications will only have a
single thread to run on, and if your application is doing blocking I/O, it will
block all other requests from being handled by the web server as well.

The example below shows how a WSGI application that returns the string
Hello, world! This is Mopidy $version on all requests. The WSGI application
is wrapped as a Tornado application and mounted at
http://localhost:6680/mywebclient/.

import os

import tornado.web
import tornado.wsgi

from mopidy import ext

def my_app_factory(config, core):

 def wsgi_app(environ, start_response):
 status = '200 OK'
 response_headers = [('Content-type', 'text/plain')]
 start_response(status, response_headers)
 return [
 'Hello, world! This is Mopidy %s\n' %
 self.core.get_version().get()
]

 return [
 ('(.*)', tornado.web.FallbackHandler, {
 'fallback': tornado.wsgi.WSGIContainer(wsgi_app),
 }),
]

class MyWebClientExtension(ext.Extension):
 ext_name = 'mywebclient'

 def setup(self, registry):
 registry.add('http:app', {
 'name': self.ext_name,
 'factory': my_app_factory,
 })

 # See the Extension API for the full details on this class

API implementors

See the extension registry [https://mopidy.com/ext/].

HTTP JSON-RPC API

The Mopidy-HTTP extension makes Mopidy’s mopidy.core — Core API available using
JSON-RPC over HTTP using HTTP POST and WebSockets. We also provide a JavaScript
wrapper, called Mopidy.js, around the JSON-RPC over
WebSocket API for use both from browsers and Node.js. The
Mopidy-API-Explorer [https://mopidy.com/ext/api-explorer] extension can
also be used to get you familiarized with HTTP based APIs.

HTTP POST API

The Mopidy web server accepts HTTP requests with the POST method to
http://localhost:6680/mopidy/rpc, where the localhost:6680 part will vary
with your local setup. Your requests must also set the Content-Type header
to application/json. The HTTP POST endpoint gives you access to Mopidy’s
full core API, but does not give you notification on events. If you need
to listen to events, you should probably use the WebSocket API instead.

Example usage from the command line:

$ curl -d '{"jsonrpc": "2.0", "id": 1, "method": "core.playback.get_state"}' -H 'Content-Type: application/json' http://localhost:6680/mopidy/rpc
{"jsonrpc": "2.0", "id": 1, "result": "stopped"}

For details on the request and response format, see JSON-RPC 2.0 messages.

WebSocket API

The Mopidy web server exposes a WebSocket at http://localhost:6680/mopidy/ws,
where the localhost:6680 part will vary with your local setup. The
WebSocket gives you access to Mopidy’s full API and enables Mopidy to instantly
push events to the client, as they happen.

On the WebSocket we send two different kind of messages: The client can send
JSON-RPC 2.0 requests, and the server will respond with
JSON-RPC 2.0 responses. In addition, the server will send event messages when something happens on the server. Both message types are
encoded as JSON objects.

If you’re using the API from JavaScript, either in the browser or in Node.js,
you should use Mopidy.js JavaScript library which wraps the WebSocket API in a nice
JavaScript API.

JSON-RPC 2.0 messages

JSON-RPC 2.0 messages can be recognized by checking for the key named
jsonrpc with the string value 2.0. For details on the messaging format,
please refer to the JSON-RPC 2.0 spec [https://www.jsonrpc.org/specification].

All methods in the mopidy.core — Core API is made available through JSON-RPC calls
over the WebSocket. For example, mopidy.core.PlaybackController.play() is
available as the JSON-RPC method core.playback.play.

Example JSON-RPC request:

{"jsonrpc": "2.0", "id": 1, "method": "core.playback.get_current_track"}

Example JSON-RPC response:

{"jsonrpc": "2.0", "id": 1, "result": {"__model__": "Track", "...": "..."}}

The JSON-RPC method core.describe returns a data structure describing all
available methods. If you’re unsure how the core API maps to JSON-RPC, having a
look at the core.describe response can be helpful.

Event messages

Event objects will always have a key named event whose value is the event
type. Depending on the event type, the event may include additional fields for
related data. The events maps directly to the mopidy.core.CoreListener
API. Refer to the CoreListener method names is the
available event types. The CoreListener method’s keyword
arguments are all included as extra fields on the event objects. Example event
message:

{"event": "track_playback_started", "track": {...}}

Mopidy.js JavaScript library

We’ve made a JavaScript library, Mopidy.js, which wraps the
WebSocket API and gets you quickly started with working on your client
instead of figuring out how to communicate with Mopidy. This library is used
as the foundation of most Mopidy web clients [https://mopidy.com/ext/].

See the Mopidy.js project [https://github.com/mopidy/mopidy.js] for
detailed usage documentation and demo applications built using Mopidy.js.

mopidy.audio — Audio API

The audio API is the interface we have built around GStreamer to support our
specific use cases. Most backends should be able to get by with simply setting
the URI of the resource they want to play, for these cases the default playback
provider should be used.

For more advanced cases such as when the raw audio data is delivered outside of
GStreamer or the backend needs to add metadata to the currently playing
resource, developers should sub-class the base playback provider and implement
the extra behaviour that is needed through the following API:

	
class mopidy.audio.Audio(config, mixer) → None [https://docs.python.org/3/library/constants.html#None]

	Audio output through GStreamer [https://gstreamer.freedesktop.org/].

	
enable_sync_handler() → None [https://docs.python.org/3/library/constants.html#None]

	Enable manual processing of messages from bus.

Should only be used by tests.

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
get_current_tags() → dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], list [https://docs.python.org/3/library/stdtypes.html#list][Any [https://docs.python.org/3/library/typing.html#typing.Any]]]

	Get the currently playing media’s tags.

If no tags have been found, or nothing is playing this returns an empty
dictionary. For each set of tags we collect a tags_changed event is
emitted with the keys of the changed tags. After such calls users may
call this function to get the updated values.

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], list [https://docs.python.org/3/library/stdtypes.html#list][Any [https://docs.python.org/3/library/typing.html#typing.Any]]]

	
get_position() → DurationMs

	Get position in milliseconds.

	Return type:

	NewType [https://docs.python.org/3/library/typing.html#typing.NewType](DurationMs, int [https://docs.python.org/3/library/functions.html#int])

	
mixer: SoftwareMixerAdapter | None = None

	The software mixing interface mopidy.audio.actor.SoftwareMixerAdapter

	
on_start() → None [https://docs.python.org/3/library/constants.html#None]

	Run code at the beginning of the actor’s life.

Hook for doing any setup that should be done after the actor is
started, but before it starts processing messages.

For ThreadingActor, this method is executed in the actor’s own
thread, while __init__() is executed in the thread that created
the actor.

If an exception is raised by this method the stack trace will be
logged, and the actor will stop.

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
on_stop() → None [https://docs.python.org/3/library/constants.html#None]

	Run code at the end of the actor’s life.

Hook for doing any cleanup that should be done after the actor has
processed the last message, and before the actor stops.

This hook is not called when the actor stops because of an unhandled
exception. In that case, the on_failure() hook is called instead.

For ThreadingActor this method is executed in the actor’s own
thread, immediately before the thread exits.

If an exception is raised by this method the stack trace will be
logged, and the actor will stop.

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
pause_playback() → bool [https://docs.python.org/3/library/functions.html#bool]

	Notify GStreamer that it should pause playback.

Returns True if successful, else False.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
prepare_change() → bool [https://docs.python.org/3/library/functions.html#bool]

	Notify GStreamer that we are about to change state of playback.

This function MUST be called before changing URIs or doing
changes like updating data that is being pushed. The reason for this
is that GStreamer will reset all its state when it changes to
Gst.State.READY.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
set_about_to_finish_callback(callback) → None [https://docs.python.org/3/library/constants.html#None]

	Configure audio to use an about-to-finish callback.

This should be used to achieve gapless playback. For this to work the
callback MUST call set_uri() with the new URI to play and
block until this call has been made. prepare_change() is not
needed before set_uri() in this one special case.

	Parameters:

	callable – Callback to run when we need the next URI.

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
set_position(position) → bool [https://docs.python.org/3/library/functions.html#bool]

	Set position in milliseconds.

	Parameters:

	position (NewType [https://docs.python.org/3/library/typing.html#typing.NewType](DurationMs, int [https://docs.python.org/3/library/functions.html#int])) – the position in milliseconds

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
set_source_setup_callback(callback) → None [https://docs.python.org/3/library/constants.html#None]

	Configure audio to use a source-setup callback.

This should be used to modify source-specific properties such as login
details.

	Parameters:

	callable – Callback to run when we setup the source.

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
set_uri(uri, live_stream=False, download=False) → None [https://docs.python.org/3/library/constants.html#None]

	Set URI of audio to be played.

You MUST call prepare_change() before calling this method.

	Parameters:

	
	uri (str [https://docs.python.org/3/library/stdtypes.html#str]) – the URI to play

	live_stream (bool [https://docs.python.org/3/library/functions.html#bool]) – disables buffering, reducing latency for stream,
and discarding data when paused

	download (bool [https://docs.python.org/3/library/functions.html#bool]) – enables “download” buffering mode

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
start_playback() → bool [https://docs.python.org/3/library/functions.html#bool]

	Notify GStreamer that it should start playback.

Returns True if successful, else False.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
state: PlaybackState = 'stopped'

	The GStreamer state mapped to mopidy.audio.PlaybackState

	
stop_playback() → bool [https://docs.python.org/3/library/functions.html#bool]

	Notify GStreamer that it should stop playback.

Returns True if successful, else False.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
wait_for_state_change() → None [https://docs.python.org/3/library/constants.html#None]

	Block until any pending state changes are complete.

Should only be used by tests.

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

Audio listener

	
class mopidy.audio.AudioListener

	Marker interface for recipients of events sent by the audio actor.

Any Pykka actor that mixes in this class will receive calls to the methods
defined here when the corresponding events happen in the core actor. This
interface is used both for looking up what actors to notify of the events,
and for providing default implementations for those listeners that are not
interested in all events.

	
position_changed(position) → None [https://docs.python.org/3/library/constants.html#None]

	Called whenever the position of the stream changes.

MAY be implemented by actor.

	Parameters:

	position (int [https://docs.python.org/3/library/functions.html#int]) – Position in milliseconds.

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
reached_end_of_stream() → None [https://docs.python.org/3/library/constants.html#None]

	Called whenever the end of the audio stream is reached.

MAY be implemented by actor.

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
static send(event, **kwargs) → None [https://docs.python.org/3/library/constants.html#None]

	Helper to allow calling of audio listener events.

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
state_changed(old_state, new_state, target_state) → None [https://docs.python.org/3/library/constants.html#None]

	Called after the playback state have changed.

Will be called for both immediate and async state changes in GStreamer.

Target state is used to when we should be in the target state, but
temporarily need to switch to an other state. A typical example of this
is buffering. When this happens an event with
old=PLAYING, new=PAUSED, target=PLAYING will be emitted. Once we have
caught up a old=PAUSED, new=PLAYING, target=None event will be
be generated.

Regular state changes will not have target state set as they are final
states which should be stable.

MAY be implemented by actor.

	Parameters:

	
	old_state (mopidy.audio.PlaybackState) – the state before the change

	new_state (mopidy.audio.PlaybackState) – the state after the change

	target_state (mopidy.audio.PlaybackState
or None if this is a final state.) – the intended state

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
stream_changed(uri) → None [https://docs.python.org/3/library/constants.html#None]

	Called whenever the audio stream changes.

MAY be implemented by actor.

	Parameters:

	uri (string) – URI the stream has started playing.

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
tags_changed(tags) → None [https://docs.python.org/3/library/constants.html#None]

	Called whenever the current audio stream’s tags change.

This event signals that some track metadata has been updated. This can
be metadata such as artists, titles, organization, or details about the
actual audio such as bit-rates, numbers of channels etc.

For the available tag keys please refer to GStreamer documentation for
tags.

MAY be implemented by actor.

	Parameters:

	tags (set [https://docs.python.org/3/library/stdtypes.html#set] of strings) – The tags that have just been updated.

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

Audio scanner

	
class mopidy.audio.scan.Scanner(timeout=1000, proxy_config=None)

	Helper to get tags and other relevant info from URIs.

	Parameters:

	
	timeout – timeout for scanning a URI in ms

	proxy_config – dictionary containing proxy config strings.

	
scan(uri, timeout=None)

	Scan the given uri collecting relevant metadata.

	Parameters:

	
	uri (string) – URI of the resource to scan.

	timeout (int [https://docs.python.org/3/library/functions.html#int]) – timeout for scanning a URI in ms. Defaults to the
timeout value used when creating the scanner.

	Returns:

	A named tuple containing
(uri, tags, duration, seekable, mime).
tags is a dictionary of lists for all the tags we found.
duration is the length of the URI in milliseconds, or
None if the URI has no duration. seekable is boolean.
indicating if a seek would succeed.

Audio utils

	
class mopidy.audio.utils.Signals → None [https://docs.python.org/3/library/constants.html#None]

	Helper for tracking gobject signal registrations.

	
clear() → None [https://docs.python.org/3/library/constants.html#None]

	Clear all registered signal handlers.

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
connect(element, event, func, *args) → None [https://docs.python.org/3/library/constants.html#None]

	Connect a function + args to signal event on an element.

Each event may only be handled by one callback in this implementation.

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
disconnect(element, event) → None [https://docs.python.org/3/library/constants.html#None]

	Disconnect whatever handler we have for an element+event pair.

Does nothing it the handler has already been removed.

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
mopidy.audio.utils.clocktime_to_millisecond(value) → DurationMs

	Convert an internal GStreamer time to millisecond time.

	Return type:

	NewType [https://docs.python.org/3/library/typing.html#typing.NewType](DurationMs, int [https://docs.python.org/3/library/functions.html#int])

	
mopidy.audio.utils.millisecond_to_clocktime(value) → int [https://docs.python.org/3/library/functions.html#int]

	Convert a millisecond time to internal GStreamer time.

	Return type:

	int [https://docs.python.org/3/library/functions.html#int]

	
mopidy.audio.utils.setup_proxy(element, config) → None [https://docs.python.org/3/library/constants.html#None]

	Configure a GStreamer element with proxy settings.

	Parameters:

	
	element (Element) – element to setup proxy in.

	config (ProxyConfig) – proxy settings to use.

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
mopidy.audio.utils.supported_uri_schemes(uri_schemes) → set [https://docs.python.org/3/library/stdtypes.html#set][UriScheme]

	Determine which URIs we can actually support from provided whitelist.

	Parameters:

	uri_schemes (Iterable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable][NewType [https://docs.python.org/3/library/typing.html#typing.NewType](UriScheme, str [https://docs.python.org/3/library/stdtypes.html#str])]) – list/set of URIs to check support for.

	Return type:

	set [https://docs.python.org/3/library/stdtypes.html#set][NewType [https://docs.python.org/3/library/typing.html#typing.NewType](UriScheme, str [https://docs.python.org/3/library/stdtypes.html#str])]

mopidy.mixer — Audio mixer API

	
class mopidy.mixer.Mixer(config) → None [https://docs.python.org/3/library/constants.html#None]

	Audio mixer API.

If the mixer has problems during initialization it should raise
mopidy.exceptions.MixerError with a descriptive error message. This
will make Mopidy print the error message and exit so that the user can fix
the issue.

	Parameters:

	config (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – the entire Mopidy configuration

	
get_mute() → bool [https://docs.python.org/3/library/functions.html#bool] | None [https://docs.python.org/3/library/constants.html#None]

	Get mute state of the mixer.

MAY be implemented by subclass.

Returns True if muted, False if unmuted, and
None if unknown.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool] | None [https://docs.python.org/3/library/constants.html#None]

	
get_volume() → Percentage | None [https://docs.python.org/3/library/constants.html#None]

	Get volume level of the mixer on a linear scale from 0 to 100.

Example values:

	Return type:

	Optional [https://docs.python.org/3/library/typing.html#typing.Optional][NewType [https://docs.python.org/3/library/typing.html#typing.NewType](Percentage, int [https://docs.python.org/3/library/functions.html#int])]

	0:
	Minimum volume, usually silent.

	100:
	Maximum volume.

	None:
	Volume is unknown.

MAY be implemented by subclass.

	
name: ClassVar [https://docs.python.org/3/library/typing.html#typing.ClassVar][str [https://docs.python.org/3/library/stdtypes.html#str]] = ''

	Name of the mixer.

Used when configuring what mixer to use. Should match the
ext_name of the extension providing the
mixer.

	
ping() → bool [https://docs.python.org/3/library/functions.html#bool]

	Called to check if the actor is still alive.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
set_mute(mute) → bool [https://docs.python.org/3/library/functions.html#bool]

	Mute or unmute the mixer.

MAY be implemented by subclass.

Returns True if successful, False otherwise.

	Parameters:

	mute (bool [https://docs.python.org/3/library/functions.html#bool]) – True to mute, False to unmute

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
set_volume(volume) → bool [https://docs.python.org/3/library/functions.html#bool]

	Set volume level of the mixer.

MAY be implemented by subclass.

Returns True if successful, False otherwise.

	Parameters:

	volume (NewType [https://docs.python.org/3/library/typing.html#typing.NewType](Percentage, int [https://docs.python.org/3/library/functions.html#int])) – Volume in the range [0..100]

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
trigger_mute_changed(mute) → None [https://docs.python.org/3/library/constants.html#None]

	Send mute_changed event to all mixer listeners.

This method should be called by subclasses when the mute state is
changed, either because of a call to set_mute() or because of
any external entity changing the mute state.

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
trigger_volume_changed(volume) → None [https://docs.python.org/3/library/constants.html#None]

	Send volume_changed event to all mixer listeners.

This method should be called by subclasses when the volume is changed,
either because of a call to set_volume() or because of any
external entity changing the volume.

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
class mopidy.mixer.MixerListener

	Marker interface for recipients of events sent by the mixer actor.

Any Pykka actor that mixes in this class will receive calls to the methods
defined here when the corresponding events happen in the mixer actor. This
interface is used both for looking up what actors to notify of the events,
and for providing default implementations for those listeners that are not
interested in all events.

	
mute_changed(mute) → None [https://docs.python.org/3/library/constants.html#None]

	Called after the mute state has changed.

MAY be implemented by actor.

	Parameters:

	mute (bool [https://docs.python.org/3/library/functions.html#bool]) – True if muted, False if not muted

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
static send(event, **kwargs) → None [https://docs.python.org/3/library/constants.html#None]

	Helper to allow calling of mixer listener events.

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
volume_changed(volume) → None [https://docs.python.org/3/library/constants.html#None]

	Called after the volume has changed.

MAY be implemented by actor.

	Parameters:

	volume (NewType [https://docs.python.org/3/library/typing.html#typing.NewType](Percentage, int [https://docs.python.org/3/library/functions.html#int])) – the new volume

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

Mixer implementations

See the extension registry [https://mopidy.com/ext/].

mopidy.commands — Commands API

	
class mopidy.commands.Command → None [https://docs.python.org/3/library/constants.html#None]

	Command parser and runner for building trees of commands.

This class provides a wraper around argparse.ArgumentParser [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser]
for handling this type of command line application in a better way than
argparse’s own sub-parser handling.

	
add_argument(*args, **kwargs) → None [https://docs.python.org/3/library/constants.html#None]

	Add an argument to the parser.

This method takes all the same arguments as the
argparse.ArgumentParser [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser] version of this method.

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
add_child(name, command) → None [https://docs.python.org/3/library/constants.html#None]

	Add a child parser to consider using.

	Parameters:

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – name to use for the sub-command that is being added.

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
exit(status_code=0, message=None, usage=None) → NoReturn [https://docs.python.org/3/library/typing.html#typing.NoReturn]

	Optionally print a message and exit.

	Return type:

	NoReturn [https://docs.python.org/3/library/typing.html#typing.NoReturn]

	
format_help(prog=None) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Format help for current parser and children.

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
format_usage(prog=None) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Format usage for current parser.

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
parse(args, prog=None) → Namespace [https://docs.python.org/3/library/argparse.html#argparse.Namespace]

	Parse command line arguments.

Will recursively parse commands until a final parser is found or an
error occurs. In the case of errors we will print a message and exit.
Otherwise, any overrides are applied and the current parser stored
in the command attribute of the return value.

	Parameters:

	
	args (list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]) – list of arguments to parse

	prog (str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None]) – name to use for program

	Return type:

	Namespace [https://docs.python.org/3/library/argparse.html#argparse.Namespace]

	
run(args, config, *_args, **_kwargs) → int [https://docs.python.org/3/library/functions.html#int]

	Run the command.

Must be implemented by sub-classes that are not simply an intermediate
in the command namespace.

	Return type:

	int [https://docs.python.org/3/library/functions.html#int]

	
set(**kwargs) → None [https://docs.python.org/3/library/constants.html#None]

	Override a value in the finaly result of parsing.

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
class mopidy.commands.ConfigCommand → None [https://docs.python.org/3/library/constants.html#None]

	
	
run(args, config, *_args, errors, schemas, **_kwargs) → int [https://docs.python.org/3/library/functions.html#int]

	Run the command.

Must be implemented by sub-classes that are not simply an intermediate
in the command namespace.

	
class mopidy.commands.DepsCommand → None [https://docs.python.org/3/library/constants.html#None]

	
	
run(args, config, *_args, **_kwargs) → int [https://docs.python.org/3/library/functions.html#int]

	Run the command.

Must be implemented by sub-classes that are not simply an intermediate
in the command namespace.

	Return type:

	int [https://docs.python.org/3/library/functions.html#int]

	
class mopidy.commands.RootCommand → None [https://docs.python.org/3/library/constants.html#None]

	
	
run(args, config, *_args, **_kwargs) → int [https://docs.python.org/3/library/functions.html#int]

	Run the command.

Must be implemented by sub-classes that are not simply an intermediate
in the command namespace.

	Return type:

	int [https://docs.python.org/3/library/functions.html#int]

mopidy.config — Config API

	
class mopidy.config.ConfigValue

	Represents a config key’s value and how to handle it.

Normally you will only be interacting with sub-classes for config values
that encode either deserialization behavior and/or validation.

Each config value should be used for the following actions:

	Deserializing from a raw string and validating, raising ValueError on
failure.

	Serializing a value back to a string that can be stored in a config.

	Formatting a value to a printable form (useful for masking secrets).

None values should not be deserialized, serialized or formatted,
the code interacting with the config should simply skip None config values.

	
abstract deserialize(value) → T | None [https://docs.python.org/3/library/constants.html#None]

	Cast raw string to appropriate type.

	Return type:

	Optional [https://docs.python.org/3/library/typing.html#typing.Optional][TypeVar [https://docs.python.org/3/library/typing.html#typing.TypeVar](T)]

	
serialize(value, display=False) → str [https://docs.python.org/3/library/stdtypes.html#str] | DeprecatedValue

	Convert value back to string for saving.

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str] | DeprecatedValue

	
class mopidy.config.Float(minimum=None, maximum=None, optional=False) → None [https://docs.python.org/3/library/constants.html#None]

	Float value.

	
deserialize(value) → float [https://docs.python.org/3/library/functions.html#float] | None [https://docs.python.org/3/library/constants.html#None]

	Cast raw string to appropriate type.

	Return type:

	float [https://docs.python.org/3/library/functions.html#float] | None [https://docs.python.org/3/library/constants.html#None]

	
class mopidy.config.List(optional=False, unique=False, subtype=<mopidy.config.types.String object>) → None [https://docs.python.org/3/library/constants.html#None]

	List value.

Supports elements split by commas or newlines. Newlines take precedence and
empty list items will be filtered out.

Enforcing unique entries in the list will result in a set data structure
being used. This does not preserve ordering, which could result in the
serialized output being unstable.

	
deserialize(value) → tuple [https://docs.python.org/3/library/stdtypes.html#tuple][V, ...] | frozenset [https://docs.python.org/3/library/stdtypes.html#frozenset][V]

	Cast raw string to appropriate type.

	Return type:

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple][TypeVar [https://docs.python.org/3/library/typing.html#typing.TypeVar](V, bound= ConfigValue), ... [https://docs.python.org/3/library/constants.html#Ellipsis]] | frozenset [https://docs.python.org/3/library/stdtypes.html#frozenset][TypeVar [https://docs.python.org/3/library/typing.html#typing.TypeVar](V, bound= ConfigValue)]

	
serialize(value, display=False) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Convert value back to string for saving.

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
class mopidy.config.Pair(optional=False, optional_pair=False, separator='|', subtypes=(<mopidy.config.types.String object>, <mopidy.config.types.String object>)) → None [https://docs.python.org/3/library/constants.html#None]

	Pair value.

The value is expected to be a pair of elements, separated by a specified delimiter.
Values can optionally not be a pair, in which case the whole input is provided for
both sides of the value.

	
deserialize(value) → tuple [https://docs.python.org/3/library/stdtypes.html#tuple][K, V] | None [https://docs.python.org/3/library/constants.html#None]

	Cast raw string to appropriate type.

	Return type:

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple][TypeVar [https://docs.python.org/3/library/typing.html#typing.TypeVar](K, bound= ConfigValue), TypeVar [https://docs.python.org/3/library/typing.html#typing.TypeVar](V, bound= ConfigValue)] | None [https://docs.python.org/3/library/constants.html#None]

	
serialize(value, display=False) → str [https://docs.python.org/3/library/stdtypes.html#str] | DeprecatedValue

	Convert value back to string for saving.

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str] | DeprecatedValue

Config section schemas

	
class mopidy.config.schemas.ConfigSchema(name) → None [https://docs.python.org/3/library/constants.html#None]

	Logical group of config values that correspond to a config section.

Schemas are set up by assigning config keys with config values to
instances. Once setup deserialize() can be called with a dict of
values to process. For convienience we also support format() method
that can used for converting the values to a dict that can be printed and
serialize() for converting the values to a form suitable for
persistence.

	
deserialize(values) → tuple [https://docs.python.org/3/library/stdtypes.html#tuple][dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]], dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]]

	Validates the given values using the config schema.

Returns a tuple with cleaned values and errors.

	Return type:

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple][dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]], dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]]

	
serialize(values, display=False) → dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]

	Converts the given values to a format suitable for persistence.

If display is True secret config values, like passwords,
will be masked out.

Returns a dict of config keys and values.

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]

	
class mopidy.config.schemas.MapConfigSchema(name, value_type) → None [https://docs.python.org/3/library/constants.html#None]

	Schema for handling multiple unknown keys with the same type.

Does not sub-class ConfigSchema, but implements the same
serialize/deserialize interface.

Config value types

	
class mopidy.config.types.Boolean(optional=False) → None [https://docs.python.org/3/library/constants.html#None]

	Boolean value.

Accepts 1, yes, true, and on with any casing as
True.

Accepts 0, no, false, and off with any casing as
False.

	
deserialize(value) → bool [https://docs.python.org/3/library/functions.html#bool] | None [https://docs.python.org/3/library/constants.html#None]

	Cast raw string to appropriate type.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool] | None [https://docs.python.org/3/library/constants.html#None]

	
serialize(value, display=False) → Literal [https://docs.python.org/3/library/typing.html#typing.Literal]['true', 'false']

	Convert value back to string for saving.

	Return type:

	Literal [https://docs.python.org/3/library/typing.html#typing.Literal]['true', 'false']

	
class mopidy.config.types.ConfigValue

	Represents a config key’s value and how to handle it.

Normally you will only be interacting with sub-classes for config values
that encode either deserialization behavior and/or validation.

Each config value should be used for the following actions:

	Deserializing from a raw string and validating, raising ValueError on
failure.

	Serializing a value back to a string that can be stored in a config.

	Formatting a value to a printable form (useful for masking secrets).

None values should not be deserialized, serialized or formatted,
the code interacting with the config should simply skip None config values.

	
abstract deserialize(value) → T | None [https://docs.python.org/3/library/constants.html#None]

	Cast raw string to appropriate type.

	Return type:

	Optional [https://docs.python.org/3/library/typing.html#typing.Optional][TypeVar [https://docs.python.org/3/library/typing.html#typing.TypeVar](T)]

	
serialize(value, display=False) → str [https://docs.python.org/3/library/stdtypes.html#str] | DeprecatedValue

	Convert value back to string for saving.

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str] | DeprecatedValue

	
class mopidy.config.types.Deprecated

	Deprecated value.

Used for ignoring old config values that are no longer in use, but should
not cause the config parser to crash.

	
deserialize(value) → DeprecatedValue

	Cast raw string to appropriate type.

	Return type:

	DeprecatedValue

	
serialize(value, display=False) → DeprecatedValue

	Convert value back to string for saving.

	Return type:

	DeprecatedValue

	
class mopidy.config.types.Float(minimum=None, maximum=None, optional=False) → None [https://docs.python.org/3/library/constants.html#None]

	Float value.

	
deserialize(value) → float [https://docs.python.org/3/library/functions.html#float] | None [https://docs.python.org/3/library/constants.html#None]

	Cast raw string to appropriate type.

	Return type:

	float [https://docs.python.org/3/library/functions.html#float] | None [https://docs.python.org/3/library/constants.html#None]

	
class mopidy.config.types.Hostname(optional=False) → None [https://docs.python.org/3/library/constants.html#None]

	Network hostname value.

	
deserialize(value, display=False) → str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None]

	Cast raw string to appropriate type.

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None]

	
class mopidy.config.types.Integer(minimum=None, maximum=None, choices=None, optional=False) → None [https://docs.python.org/3/library/constants.html#None]

	Integer value.

	
deserialize(value) → int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None]

	Cast raw string to appropriate type.

	Return type:

	int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None]

	
class mopidy.config.types.List(optional=False, unique=False, subtype=<mopidy.config.types.String object>) → None [https://docs.python.org/3/library/constants.html#None]

	List value.

Supports elements split by commas or newlines. Newlines take precedence and
empty list items will be filtered out.

Enforcing unique entries in the list will result in a set data structure
being used. This does not preserve ordering, which could result in the
serialized output being unstable.

	
deserialize(value) → tuple [https://docs.python.org/3/library/stdtypes.html#tuple][V, ...] | frozenset [https://docs.python.org/3/library/stdtypes.html#frozenset][V]

	Cast raw string to appropriate type.

	Return type:

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple][TypeVar [https://docs.python.org/3/library/typing.html#typing.TypeVar](V, bound= ConfigValue), ... [https://docs.python.org/3/library/constants.html#Ellipsis]] | frozenset [https://docs.python.org/3/library/stdtypes.html#frozenset][TypeVar [https://docs.python.org/3/library/typing.html#typing.TypeVar](V, bound= ConfigValue)]

	
serialize(value, display=False) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Convert value back to string for saving.

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
class mopidy.config.types.LogColor

	
	
deserialize(value) → Literal [https://docs.python.org/3/library/typing.html#typing.Literal]['black', 'red', 'green', 'yellow', 'blue', 'magenta', 'cyan', 'white']

	Cast raw string to appropriate type.

	Return type:

	Literal [https://docs.python.org/3/library/typing.html#typing.Literal]['black', 'red', 'green', 'yellow', 'blue', 'magenta', 'cyan', 'white']

	
serialize(value, display=False) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Convert value back to string for saving.

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
class mopidy.config.types.LogLevel

	Log level value.

Expects one of critical, error, warning, info, debug,
trace, or all, with any casing.

	
deserialize(value) → int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None]

	Cast raw string to appropriate type.

	Return type:

	int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None]

	
serialize(value, display=False) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Convert value back to string for saving.

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
class mopidy.config.types.Pair(optional=False, optional_pair=False, separator='|', subtypes=(<mopidy.config.types.String object>, <mopidy.config.types.String object>)) → None [https://docs.python.org/3/library/constants.html#None]

	Pair value.

The value is expected to be a pair of elements, separated by a specified delimiter.
Values can optionally not be a pair, in which case the whole input is provided for
both sides of the value.

	
deserialize(value) → tuple [https://docs.python.org/3/library/stdtypes.html#tuple][K, V] | None [https://docs.python.org/3/library/constants.html#None]

	Cast raw string to appropriate type.

	Return type:

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple][TypeVar [https://docs.python.org/3/library/typing.html#typing.TypeVar](K, bound= ConfigValue), TypeVar [https://docs.python.org/3/library/typing.html#typing.TypeVar](V, bound= ConfigValue)] | None [https://docs.python.org/3/library/constants.html#None]

	
serialize(value, display=False) → str [https://docs.python.org/3/library/stdtypes.html#str] | DeprecatedValue

	Convert value back to string for saving.

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str] | DeprecatedValue

	
class mopidy.config.types.Path(optional=False)

	File system path.

The following expansions of the path will be done:

	~ to the current user’s home directory

	$XDG_CACHE_DIR according to the XDG spec

	$XDG_CONFIG_DIR according to the XDG spec

	$XDG_DATA_DIR according to the XDG spec

	$XDG_MUSIC_DIR according to the XDG spec

	
deserialize(value) → _ExpandedPath | None [https://docs.python.org/3/library/constants.html#None]

	Cast raw string to appropriate type.

	Return type:

	_ExpandedPath | None [https://docs.python.org/3/library/constants.html#None]

	
serialize(value, display=False) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Convert value back to string for saving.

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
class mopidy.config.types.Port(choices=None, optional=False)

	Network port value.

Expects integer in the range 0-65535, zero tells the kernel to simply
allocate a port for us.

	
class mopidy.config.types.Secret(optional=False, choices=None, transformer=None) → None [https://docs.python.org/3/library/constants.html#None]

	Secret string value.

Is decoded as utf-8, and n and t escapes should work and be preserved.

Should be used for passwords, auth tokens etc. Will mask value when being
displayed.

	
serialize(value, display=False) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Convert value back to string for saving.

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
class mopidy.config.types.String(optional=False, choices=None, transformer=None) → None [https://docs.python.org/3/library/constants.html#None]

	String value.

Is decoded as utf-8, and n and t escapes should work and be preserved.

	
deserialize(value) → str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None]

	Cast raw string to appropriate type.

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None]

	
serialize(value, display=False) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Convert value back to string for saving.

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

Config value validators

	
mopidy.config.validators.validate_choice(value, choices) → None [https://docs.python.org/3/library/constants.html#None]

	Validate that value is one of the choices.

Normally called in deserialize().

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
mopidy.config.validators.validate_maximum(value, maximum) → None [https://docs.python.org/3/library/constants.html#None]

	Validate that value is at most maximum.

Normally called in deserialize().

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
mopidy.config.validators.validate_minimum(value, minimum) → None [https://docs.python.org/3/library/constants.html#None]

	Validate that value is at least minimum.

Normally called in deserialize().

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
mopidy.config.validators.validate_required(value, required) → None [https://docs.python.org/3/library/constants.html#None]

	Validate that value is set if required.

Normally called in deserialize() on
the raw string, _not_ the converted value.

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

mopidy.httpclient — HTTP Client helpers

Helpers for configuring HTTP clients used in Mopidy extensions.

	
mopidy.httpclient.format_proxy(proxy_config, auth=True) → str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None]

	Convert a Mopidy proxy config to the commonly used proxy string format.

Outputs scheme://host:port, scheme://user:pass@host:port or
None depending on the proxy config provided.

You can also opt out of getting the basic auth by setting auth to
False.
:rtype: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None]

New in version 1.1.

	
mopidy.httpclient.format_user_agent(name=None) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Construct a User-Agent suitable for use in client code.

This will identify use by the provided name (which should be on the
format dist_name/version), Mopidy version and Python version.
:rtype: str [https://docs.python.org/3/library/stdtypes.html#str]

New in version 1.1.

mopidy.zeroconf — Zeroconf API

	
class mopidy.zeroconf.Zeroconf(name, stype, port, domain='', host='', text=None) → None [https://docs.python.org/3/library/constants.html#None]

	Publish a network service with Zeroconf.

Currently, this only works on Linux using Avahi via D-Bus.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – human readable name of the service, e.g. ‘MPD on neptune’

	stype (str [https://docs.python.org/3/library/stdtypes.html#str]) – service type, e.g. ‘_mpd._tcp’

	port (int [https://docs.python.org/3/library/functions.html#int]) – TCP port of the service, e.g. 6600

	domain (str [https://docs.python.org/3/library/stdtypes.html#str]) – local network domain name, defaults to ‘’

	host (str [https://docs.python.org/3/library/stdtypes.html#str]) – interface to advertise the service on, defaults to ‘’

	text (list [https://docs.python.org/3/library/stdtypes.html#list] of str [https://docs.python.org/3/library/stdtypes.html#str]) – extra information depending on stype, defaults to empty
list

	
publish() → bool [https://docs.python.org/3/library/functions.html#bool]

	Publish the service.

Call when your service starts.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
unpublish() → None [https://docs.python.org/3/library/constants.html#None]

	Unpublish the service.

Call when your service shuts down.

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

mopidy command

Synopsis

	mopidy
	[-h] [–version] [-q] [-v] [–config CONFIG_FILES] [-o CONFIG_OVERRIDES]
[COMMAND] …

Description

Mopidy is a music server which can play music both from multiple sources, like
your local hard drive, radio streams, and from Spotify and SoundCloud. Searches
combines results from all music sources, and you can mix tracks from all
sources in your play queue. Your playlists from Spotify or SoundCloud are also
available for use.

The mopidy command is used to start the server.

Options

	
--help, -h

	Show help message and exit.

	
--version

	Show Mopidy’s version number and exit.

	
--quiet, -q

	Show less output: warning level and higher.

	
--verbose, -v

	Show more output. Repeat up to four times for even more.

	
--config <file|directory>

	Specify config files and directories to use. To use multiple config files
or directories, separate them with a colon. The later files override the
earlier ones if there’s a conflict. When specifying a directory, all files
ending in .conf in the directory are used.

	
--option <option>, -o <option>

	Specify additional config values in the section/key=value format. Can
be provided multiple times.

Built in commands

	
config

	Show the current effective config. All configuration sources are merged
together to show the effective document. Secret values like passwords are
masked out. Config for disabled extensions are not included.

	
deps

	Show dependencies, their versions and installation location.

Extension commands

Additionally, extensions can provide extra commands. Run mopidy –help
for a list of what is available on your system and command-specific help.
Commands for disabled extensions will be listed, but can not be run.

Files

	/etc/mopidy/mopidy.conf
	System wide Mopidy configuration file.

	~/.config/mopidy/mopidy.conf
	Your personal Mopidy configuration file. Overrides any configs from the
system wide configuration file.

Examples

To start the music server, run:

mopidy

To start the server with an additional config file, that can override configs
set in the default config files, run:

mopidy --config ./my-config.conf

To start the server and change a config value directly on the command line,
run:

mopidy --option mpd/enabled=false

The --option flag may be repeated multiple times to change multiple
configs:

mopidy -o mpd/enabled=false -o spotify/bitrate=320

The mopidy config output shows the effect of the --option flags:

mopidy -o mpd/enabled=false -o spotify/bitrate=320 config

Reporting bugs

Report bugs to Mopidy’s issue tracker at
<https://github.com/mopidy/mopidy/issues>

Glossary

	backend
	A part of Mopidy providing music library, playlist storage and/or
playback capability to the core. Mopidy has a backend for each
music store or music service it supports. See mopidy.backend — Backend API for
details.

	core
	The part of Mopidy that makes multiple frontends capable of using
multiple backends. The core module is also the owner of the
tracklist. To use the core module, see mopidy.core — Core API.

	extension
	A Python package that can extend Mopidy with one or more
backends, frontends,
mixers, or web clients.
See the extension registry [https://mopidy.com/ext/] for available
Mopidy extensions.
See Extension development for how to make a new extension.

	frontend
	A part of Mopidy using the core API. Existing frontends
include the MPD server, the MPRIS/D-Bus integration,
the Last.fm scrobbler, and the HTTP server.
See Frontend API for details.

	mixer
	A part of Mopidy that controls audio volume and muting.

	tracklist
	Mopidy’s name for the play queue or current playlist. The name is
inspired by the MPRIS specification.

 Python Module Index

 a |
 b |
 c |
 e |
 h |
 m |
 z

 		 	

 		
 a	

 	[image: -]
 	
 mopidy.audio	
 Thin wrapper around the parts of GStreamer we use

 	
 	
 mopidy.audio.utils	

 		 	

 		
 b	

 	
 	
 mopidy.backend	
 The API implemented by backends

 		 	

 		
 c	

 	
 	
 mopidy.commands	
 Commands API for Mopidy CLI.

 	[image: -]
 	
 mopidy.config	
 Config API for config loading and validation

 	
 	
 mopidy.config.schemas	
 Config section validation schemas

 	
 	
 mopidy.config.types	
 Config value validation types

 	
 	
 mopidy.config.validators	
 Config value validators

 	
 	
 mopidy.core	
 Core API for use by frontends

 		 	

 		
 e	

 	
 	
 mopidy.ext	
 Extension API for extending Mopidy

 		 	

 		
 h	

 	
 	
 mopidy.httpclient	
 HTTP Client helpers for Mopidy its Extensions.

 		 	

 		
 m	

 	
 	
 mopidy.mixer	
 The audio mixer API

 	
 	
 mopidy.models	
 Data model API

 		 	

 		
 z	

 	
 	
 mopidy.zeroconf	
 Helper for publishing of services on Zeroconf

Index

 Symbols
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W
 | Z

Symbols

 	
 	
 --config

 	mopidy command line option

 	
 --help

 	mopidy command line option

 	
 --option

 	mopidy command line option

 	
 --quiet

 	mopidy command line option

 	
 --verbose

 	mopidy command line option

 	
 	
 --version

 	mopidy command line option

 	
 -h

 	mopidy command line option

 	
 -o

 	mopidy command line option

 	
 -q

 	mopidy command line option

 	
 -v

 	mopidy command line option

A

 	
 	add() (mopidy.core.TracklistController method)

 	(mopidy.ext.Registry method)

 	add_argument() (mopidy.commands.Command method)

 	add_child() (mopidy.commands.Command method)

 	Album (class in mopidy.models)

 	ALBUM (mopidy.models.Ref attribute)

 	album (mopidy.models.Track attribute)

 	album() (mopidy.models.Ref class method)

 	albums (mopidy.models.SearchResult attribute)

 	Artist (class in mopidy.models)

 	ARTIST (mopidy.models.Ref attribute)

 	artist() (mopidy.models.Ref class method)

 	artists (mopidy.models.Album attribute)

 	(mopidy.models.SearchResult attribute)

 	(mopidy.models.Track attribute)

 	
 	as_list() (mopidy.backend.PlaylistsProvider method)

 	(mopidy.core.PlaylistsController method)

 	Audio (class in mopidy.audio)

 	audio (mopidy.backend.Backend attribute)

 	
 audio/buffer_time

 	configuration value

 	
 audio/mixer

 	configuration value

 	
 audio/mixer_volume

 	configuration value

 	
 audio/output

 	configuration value

 	AudioListener (class in mopidy.audio)

B

 	
 	backend

 	Backend (class in mopidy.backend)

 	BackendListener (class in mopidy.backend)

 	
 	bitrate (mopidy.models.Track attribute)

 	Boolean (class in mopidy.config.types)

 	browse() (mopidy.backend.LibraryProvider method)

 	(mopidy.core.LibraryController method)

C

 	
 	change_track() (mopidy.backend.PlaybackProvider method)

 	check_attr() (mopidy.ext.Extension class method)

 	clear() (mopidy.audio.utils.Signals method)

 	(mopidy.core.TracklistController method)

 	clocktime_to_millisecond() (in module mopidy.audio.utils)

 	Collection (class in mopidy.models.fields)

 	Command (class in mopidy.commands)

 	command (mopidy.ext.ExtensionData attribute)

 	comment (mopidy.models.Track attribute)

 	composers (mopidy.models.Track attribute)

 	
 config

 	mopidy command line option

 	config_defaults (mopidy.ext.ExtensionData attribute)

 	config_schema (mopidy.ext.ExtensionData attribute)

 	ConfigCommand (class in mopidy.commands)

 	ConfigSchema (class in mopidy.config.schemas)

 	
 configuration value

 	audio/buffer_time

 	audio/mixer

 	audio/mixer_volume

 	audio/output

 	core/cache_dir

 	core/config_dir

 	core/data_dir

 	core/max_tracklist_length

 	core/restore_state

 	file/enabled

 	file/excluded_file_extensions

 	file/follow_symlinks

 	file/media_dirs

 	file/metadata_timeout

 	file/show_dotfiles

 	http/allowed_origins

 	http/csrf_protection

 	http/default_app

 	http/enabled

 	http/hostname

 	http/port

 	http/zeroconf

 	logcolors/*

 	logging/color

 	logging/config_file

 	logging/format

 	logging/verbosity

 	loglevels/*

 	m3u/base_dir

 	m3u/default_encoding

 	m3u/default_extension

 	m3u/enabled

 	m3u/playlists_dir

 	proxy/hostname

 	proxy/password

 	proxy/port

 	proxy/scheme

 	proxy/username

 	softwaremixer/enabled

 	stream/enabled

 	stream/metadata_blacklist

 	stream/protocols

 	stream/timeout

 	
 	ConfigValue (class in mopidy.config)

 	(class in mopidy.config.types)

 	connect() (mopidy.audio.utils.Signals method)

 	core

 	Core (class in mopidy.core)

 	
 core/cache_dir

 	configuration value

 	
 core/config_dir

 	configuration value

 	
 core/data_dir

 	configuration value

 	
 core/max_tracklist_length

 	configuration value

 	
 core/restore_state

 	configuration value

 	CoreListener (class in mopidy.core)

 	create() (mopidy.backend.PlaylistsProvider method)

 	(mopidy.core.PlaylistsController method)

D

 	
 	Date (class in mopidy.models.fields)

 	date (mopidy.models.Album attribute)

 	(mopidy.models.Track attribute)

 	delete() (mopidy.backend.PlaylistsProvider method)

 	(mopidy.core.PlaylistsController method)

 	Deprecated (class in mopidy.config.types)

 	
 deps

 	mopidy command line option

 	DepsCommand (class in mopidy.commands)

 	deserialize() (mopidy.config.ConfigValue method)

 	(mopidy.config.Float method)

 	(mopidy.config.List method)

 	(mopidy.config.Pair method)

 	(mopidy.config.schemas.ConfigSchema method)

 	(mopidy.config.types.Boolean method)

 	(mopidy.config.types.ConfigValue method)

 	(mopidy.config.types.Deprecated method)

 	(mopidy.config.types.Float method)

 	(mopidy.config.types.Hostname method)

 	(mopidy.config.types.Integer method)

 	(mopidy.config.types.List method)

 	(mopidy.config.types.LogColor method)

 	(mopidy.config.types.LogLevel method)

 	(mopidy.config.types.Pair method)

 	(mopidy.config.types.Path method)

 	(mopidy.config.types.String method)

 	
 	DIRECTORY (mopidy.models.Ref attribute)

 	directory() (mopidy.models.Ref class method)

 	disc_no (mopidy.models.Track attribute)

 	disconnect() (mopidy.audio.utils.Signals method)

 	DISPLAY

 	dist_name (mopidy.ext.Extension attribute)

E

 	
 	enable_sync_handler() (mopidy.audio.Audio method)

 	entry_point (mopidy.ext.ExtensionData attribute)

 	
 environment variable

 	DISPLAY

 	GST_DEBUG, [1]

 	GST_DEBUG_DUMP_DOT_DIR

 	GST_DEBUG_FILE=gstreamer.log

 	
 	eot_track() (mopidy.core.TracklistController method)

 	exit() (mopidy.commands.Command method)

 	ext_name (mopidy.ext.Extension attribute)

 	extension

 	Extension (class in mopidy.ext)

 	extension (mopidy.ext.ExtensionData attribute)

 	ExtensionData (class in mopidy.ext)

F

 	
 	Field (class in mopidy.models.fields)

 	
 file/enabled

 	configuration value

 	
 file/excluded_file_extensions

 	configuration value

 	
 file/follow_symlinks

 	configuration value

 	
 file/media_dirs

 	configuration value

 	
 file/metadata_timeout

 	configuration value

 	
 	
 file/show_dotfiles

 	configuration value

 	filter() (mopidy.core.TracklistController method)

 	Float (class in mopidy.config)

 	(class in mopidy.config.types)

 	format_help() (mopidy.commands.Command method)

 	format_proxy() (in module mopidy.httpclient)

 	format_usage() (mopidy.commands.Command method)

 	format_user_agent() (in module mopidy.httpclient)

 	frontend

G

 	
 	genre (mopidy.models.Track attribute)

 	get_cache_dir() (mopidy.ext.Extension class method)

 	get_command() (mopidy.ext.Extension method)

 	get_config_dir() (mopidy.ext.Extension class method)

 	get_config_schema() (mopidy.ext.Extension method)

 	get_consume() (mopidy.core.TracklistController method)

 	get_current_tags() (mopidy.audio.Audio method)

 	get_current_tl_track() (mopidy.core.PlaybackController method)

 	get_current_tlid() (mopidy.core.PlaybackController method)

 	get_current_track() (mopidy.core.PlaybackController method)

 	get_data_dir() (mopidy.ext.Extension class method)

 	get_default_config() (mopidy.ext.Extension method)

 	get_distinct() (mopidy.backend.LibraryProvider method)

 	(mopidy.core.LibraryController method)

 	get_eot_tlid() (mopidy.core.TracklistController method)

 	get_history() (mopidy.core.HistoryController method)

 	get_images() (mopidy.backend.LibraryProvider method)

 	(mopidy.core.LibraryController method)

 	get_items() (mopidy.backend.PlaylistsProvider method)

 	(mopidy.core.PlaylistsController method)

 	get_length() (mopidy.core.HistoryController method)

 	(mopidy.core.TracklistController method)

 	
 	get_mute() (mopidy.core.MixerController method)

 	(mopidy.mixer.Mixer method)

 	get_next_tlid() (mopidy.core.TracklistController method)

 	get_position() (mopidy.audio.Audio method)

 	get_previous_tlid() (mopidy.core.TracklistController method)

 	get_random() (mopidy.core.TracklistController method)

 	get_repeat() (mopidy.core.TracklistController method)

 	get_single() (mopidy.core.TracklistController method)

 	get_state() (mopidy.core.PlaybackController method)

 	get_stream_title() (mopidy.core.PlaybackController method)

 	get_time_position() (mopidy.backend.PlaybackProvider method)

 	(mopidy.core.PlaybackController method)

 	get_tl_tracks() (mopidy.core.TracklistController method)

 	get_tracks() (mopidy.core.TracklistController method)

 	get_uri_schemes() (mopidy.core.Core method)

 	(mopidy.core.PlaylistsController method)

 	get_version() (mopidy.core.Core method)

 	(mopidy.core.TracklistController method)

 	get_volume() (mopidy.core.MixerController method)

 	(mopidy.mixer.Mixer method)

 	GST_DEBUG, [1]

 	GST_DEBUG_DUMP_DOT_DIR

 	GST_DEBUG_FILE=gstreamer.log

H

 	
 	height (mopidy.models.Image attribute)

 	history (mopidy.core.Core attribute)

 	Hostname (class in mopidy.config.types)

 	
 http/allowed_origins

 	configuration value

 	
 http/csrf_protection

 	configuration value

 	
 http/default_app

 	configuration value

 	
 	
 http/enabled

 	configuration value

 	
 http/hostname

 	configuration value

 	
 http/port

 	configuration value

 	
 http/zeroconf

 	configuration value

I

 	
 	Identifier (class in mopidy.models.fields)

 	Image (class in mopidy.models)

 	ImmutableObject (class in mopidy.models)

 	
 	index() (mopidy.core.TracklistController method)

 	Integer (class in mopidy.config.types)

 	(class in mopidy.models.fields)

 	is_live() (mopidy.backend.PlaybackProvider method)

L

 	
 	last_modified (mopidy.models.Playlist attribute)

 	(mopidy.models.Track attribute)

 	length (mopidy.models.Playlist property)

 	(mopidy.models.Track attribute)

 	library (mopidy.backend.Backend attribute)

 	(mopidy.core.Core attribute)

 	LibraryProvider (class in mopidy.backend)

 	List (class in mopidy.config)

 	(class in mopidy.config.types)

 	load_extensions() (in module mopidy.ext)

 	LogColor (class in mopidy.config.types)

 	
 logcolors/*

 	configuration value

 	
 logging/color

 	configuration value

 	
 	
 logging/config_file

 	configuration value

 	
 logging/format

 	configuration value

 	
 logging/verbosity

 	configuration value

 	LogLevel (class in mopidy.config.types)

 	
 loglevels/*

 	configuration value

 	lookup() (mopidy.backend.LibraryProvider method)

 	(mopidy.backend.PlaylistsProvider method)

 	(mopidy.core.LibraryController method)

 	(mopidy.core.PlaylistsController method)

 	lookup_many() (mopidy.backend.LibraryProvider method)

M

 	
 	
 m3u/base_dir

 	configuration value

 	
 m3u/default_encoding

 	configuration value

 	
 m3u/default_extension

 	configuration value

 	
 m3u/enabled

 	configuration value

 	
 m3u/playlists_dir

 	configuration value

 	MapConfigSchema (class in mopidy.config.schemas)

 	millisecond_to_clocktime() (in module mopidy.audio.utils)

 	mixer

 	Mixer (class in mopidy.mixer)

 	mixer (mopidy.audio.Audio attribute)

 	(mopidy.core.Core attribute)

 	MixerListener (class in mopidy.mixer)

 	model_json_decoder() (in module mopidy.models)

 	ModelJSONEncoder (class in mopidy.models)

 	
 module

 	mopidy.audio

 	mopidy.audio.utils

 	mopidy.backend

 	mopidy.commands

 	mopidy.config

 	mopidy.config.schemas

 	mopidy.config.types

 	mopidy.config.validators

 	mopidy.core

 	mopidy.ext

 	mopidy.httpclient

 	mopidy.mixer

 	mopidy.models

 	mopidy.zeroconf

 	
 mopidy command line option

 	--config

 	--help

 	--option

 	--quiet

 	--verbose

 	--version

 	-h

 	-o

 	-q

 	-v

 	config

 	deps

 	
 	
 mopidy.audio

 	module

 	
 mopidy.audio.utils

 	module

 	
 mopidy.backend

 	module

 	
 mopidy.commands

 	module

 	
 mopidy.config

 	module

 	
 mopidy.config.schemas

 	module

 	
 mopidy.config.types

 	module

 	
 mopidy.config.validators

 	module

 	
 mopidy.core

 	module

 	mopidy.core.HistoryController (class in mopidy.core)

 	mopidy.core.LibraryController (class in mopidy.core)

 	mopidy.core.MixerController (class in mopidy.core)

 	mopidy.core.PlaybackState (class in mopidy.core)

 	mopidy.core.PlaylistsController (class in mopidy.core)

 	
 mopidy.ext

 	module

 	
 mopidy.httpclient

 	module

 	
 mopidy.mixer

 	module

 	
 mopidy.models

 	module

 	
 mopidy.zeroconf

 	module

 	move() (mopidy.core.TracklistController method)

 	musicbrainz_id (mopidy.models.Album attribute)

 	(mopidy.models.Artist attribute)

 	(mopidy.models.Track attribute)

 	mute_changed() (mopidy.core.CoreListener method)

 	(mopidy.mixer.MixerListener method)

N

 	
 	name (mopidy.mixer.Mixer attribute)

 	(mopidy.models.Album attribute)

 	(mopidy.models.Artist attribute)

 	(mopidy.models.Playlist attribute)

 	(mopidy.models.Ref attribute)

 	(mopidy.models.Track attribute)

 	
 	next() (mopidy.core.PlaybackController method)

 	next_track() (mopidy.core.TracklistController method)

 	num_discs (mopidy.models.Album attribute)

 	num_tracks (mopidy.models.Album attribute)

O

 	
 	on_event() (mopidy.core.CoreListener method)

 	on_source_setup() (mopidy.backend.PlaybackProvider method)

 	
 	on_start() (mopidy.audio.Audio method)

 	on_stop() (mopidy.audio.Audio method)

 	options_changed() (mopidy.core.CoreListener method)

P

 	
 	Pair (class in mopidy.config)

 	(class in mopidy.config.types)

 	parse() (mopidy.commands.Command method)

 	Path (class in mopidy.config.types)

 	pause() (mopidy.backend.PlaybackProvider method)

 	(mopidy.core.PlaybackController method)

 	pause_playback() (mopidy.audio.Audio method)

 	PAUSED (mopidy.core.mopidy.core.PlaybackState attribute)

 	performers (mopidy.models.Track attribute)

 	ping() (mopidy.backend.Backend method)

 	(mopidy.mixer.Mixer method)

 	play() (mopidy.backend.PlaybackProvider method)

 	(mopidy.core.PlaybackController method)

 	playback (mopidy.backend.Backend attribute)

 	(mopidy.core.Core attribute)

 	playback_state_changed() (mopidy.core.CoreListener method)

 	PlaybackController (class in mopidy.core)

 	PlaybackProvider (class in mopidy.backend)

 	PLAYING (mopidy.core.mopidy.core.PlaybackState attribute)

 	Playlist (class in mopidy.models)

 	PLAYLIST (mopidy.models.Ref attribute)

 	playlist() (mopidy.models.Ref class method)

 	playlist_changed() (mopidy.core.CoreListener method)

 	playlist_deleted() (mopidy.core.CoreListener method)

 	
 	playlists (mopidy.backend.Backend attribute)

 	(mopidy.core.Core attribute)

 	playlists_loaded() (mopidy.backend.BackendListener method)

 	(mopidy.core.CoreListener method)

 	PlaylistsProvider (class in mopidy.backend)

 	Port (class in mopidy.config.types)

 	position_changed() (mopidy.audio.AudioListener method)

 	prepare_change() (mopidy.audio.Audio method)

 	(mopidy.backend.PlaybackProvider method)

 	previous() (mopidy.core.PlaybackController method)

 	previous_track() (mopidy.core.TracklistController method)

 	
 proxy/hostname

 	configuration value

 	
 proxy/password

 	configuration value

 	
 proxy/port

 	configuration value

 	
 proxy/scheme

 	configuration value

 	
 proxy/username

 	configuration value

 	publish() (mopidy.zeroconf.Zeroconf method)

 	
 Python Enhancement Proposals

 	PEP 386, [1]

 	PEP 396

R

 	
 	reached_end_of_stream() (mopidy.audio.AudioListener method)

 	Ref (class in mopidy.models)

 	refresh() (mopidy.backend.LibraryProvider method)

 	(mopidy.backend.PlaylistsProvider method)

 	(mopidy.core.LibraryController method)

 	(mopidy.core.PlaylistsController method)

 	Registry (class in mopidy.ext)

 	remove() (mopidy.core.TracklistController method)

 	replace() (mopidy.models.ImmutableObject method)

 	(mopidy.models.ValidatedImmutableObject method)

 	
 	resume() (mopidy.backend.PlaybackProvider method)

 	(mopidy.core.PlaybackController method)

 	root_directory (mopidy.backend.LibraryProvider attribute)

 	RootCommand (class in mopidy.commands)

 	run() (mopidy.commands.Command method)

 	(mopidy.commands.ConfigCommand method)

 	(mopidy.commands.DepsCommand method)

 	(mopidy.commands.RootCommand method)

S

 	
 	save() (mopidy.backend.PlaylistsProvider method)

 	(mopidy.core.PlaylistsController method)

 	scan() (mopidy.audio.scan.Scanner method)

 	Scanner (class in mopidy.audio.scan)

 	search() (mopidy.backend.LibraryProvider method)

 	(mopidy.core.LibraryController method)

 	SearchResult (class in mopidy.models)

 	Secret (class in mopidy.config.types)

 	seek() (mopidy.backend.PlaybackProvider method)

 	(mopidy.core.PlaybackController method)

 	seeked() (mopidy.core.CoreListener method)

 	send() (mopidy.audio.AudioListener static method)

 	(mopidy.backend.BackendListener static method)

 	(mopidy.core.CoreListener static method)

 	(mopidy.mixer.MixerListener static method)

 	serialize() (mopidy.config.ConfigValue method)

 	(mopidy.config.List method)

 	(mopidy.config.Pair method)

 	(mopidy.config.schemas.ConfigSchema method)

 	(mopidy.config.types.Boolean method)

 	(mopidy.config.types.ConfigValue method)

 	(mopidy.config.types.Deprecated method)

 	(mopidy.config.types.List method)

 	(mopidy.config.types.LogColor method)

 	(mopidy.config.types.LogLevel method)

 	(mopidy.config.types.Pair method)

 	(mopidy.config.types.Path method)

 	(mopidy.config.types.Secret method)

 	(mopidy.config.types.String method)

 	set() (mopidy.commands.Command method)

 	set_about_to_finish_callback() (mopidy.audio.Audio method)

 	set_consume() (mopidy.core.TracklistController method)

 	set_mute() (mopidy.core.MixerController method)

 	(mopidy.mixer.Mixer method)

 	set_position() (mopidy.audio.Audio method)

 	set_random() (mopidy.core.TracklistController method)

 	
 	set_repeat() (mopidy.core.TracklistController method)

 	set_single() (mopidy.core.TracklistController method)

 	set_source_setup_callback() (mopidy.audio.Audio method)

 	set_state() (mopidy.core.PlaybackController method)

 	set_uri() (mopidy.audio.Audio method)

 	set_volume() (mopidy.core.MixerController method)

 	(mopidy.mixer.Mixer method)

 	setup() (mopidy.ext.Extension method)

 	setup_proxy() (in module mopidy.audio.utils)

 	should_download() (mopidy.backend.PlaybackProvider method)

 	shuffle() (mopidy.core.TracklistController method)

 	Signals (class in mopidy.audio.utils)

 	slice() (mopidy.core.TracklistController method)

 	
 softwaremixer/enabled

 	configuration value

 	sortname (mopidy.models.Artist attribute)

 	start_playback() (mopidy.audio.Audio method)

 	state (mopidy.audio.Audio attribute)

 	state_changed() (mopidy.audio.AudioListener method)

 	stop() (mopidy.backend.PlaybackProvider method)

 	(mopidy.core.PlaybackController method)

 	stop_playback() (mopidy.audio.Audio method)

 	STOPPED (mopidy.core.mopidy.core.PlaybackState attribute)

 	
 stream/enabled

 	configuration value

 	
 stream/metadata_blacklist

 	configuration value

 	
 stream/protocols

 	configuration value

 	
 stream/timeout

 	configuration value

 	stream_changed() (mopidy.audio.AudioListener method)

 	stream_title_changed() (mopidy.core.CoreListener method)

 	String (class in mopidy.config.types)

 	(class in mopidy.models.fields)

 	supported_uri_schemes() (in module mopidy.audio.utils)

T

 	
 	tags_changed() (mopidy.audio.AudioListener method)

 	tlid (mopidy.models.TlTrack attribute)

 	TlTrack (class in mopidy.models)

 	Track (class in mopidy.models)

 	TRACK (mopidy.models.Ref attribute)

 	track (mopidy.models.TlTrack attribute)

 	track() (mopidy.models.Ref class method)

 	track_no (mopidy.models.Track attribute)

 	track_playback_ended() (mopidy.core.CoreListener method)

 	track_playback_paused() (mopidy.core.CoreListener method)

 	track_playback_resumed() (mopidy.core.CoreListener method)

 	
 	track_playback_started() (mopidy.core.CoreListener method)

 	tracklist

 	(mopidy.core.Core attribute)

 	tracklist_changed() (mopidy.core.CoreListener method)

 	TracklistController (class in mopidy.core)

 	tracks (mopidy.models.Playlist attribute)

 	(mopidy.models.SearchResult attribute)

 	translate_uri() (mopidy.backend.PlaybackProvider method)

 	trigger_mute_changed() (mopidy.mixer.Mixer method)

 	trigger_volume_changed() (mopidy.mixer.Mixer method)

 	type (mopidy.models.Ref attribute)

U

 	
 	unpublish() (mopidy.zeroconf.Zeroconf method)

 	URI (class in mopidy.models.fields)

 	uri (mopidy.models.Album attribute)

 	(mopidy.models.Artist attribute)

 	(mopidy.models.Image attribute)

 	(mopidy.models.Playlist attribute)

 	(mopidy.models.Ref attribute)

 	(mopidy.models.SearchResult attribute)

 	(mopidy.models.Track attribute)

 	
 	uri_schemes (mopidy.backend.Backend attribute)

V

 	
 	validate_choice() (in module mopidy.config.validators)

 	validate_environment() (mopidy.ext.Extension method)

 	validate_extension_data() (in module mopidy.ext)

 	validate_maximum() (in module mopidy.config.validators)

 	validate_minimum() (in module mopidy.config.validators)

 	
 	validate_required() (in module mopidy.config.validators)

 	ValidatedImmutableObject (class in mopidy.models)

 	version (mopidy.ext.Extension attribute)

 	volume_changed() (mopidy.core.CoreListener method)

 	(mopidy.mixer.MixerListener method)

W

 	
 	wait_for_state_change() (mopidy.audio.Audio method)

 	
 	width (mopidy.models.Image attribute)

Z

 	
 	Zeroconf (class in mopidy.zeroconf)

 _images/graphviz-5f0b5244ba4420904bd805c112bccb776250dc2c.png
SearchResult Playlist

nav.xhtml

 Table of Contents

 		
 Mopidy

 		
 Installation

 		
 Debian/Ubuntu

 		
 Distribution and architecture support

 		
 Install from apt.mopidy.com

 		
 Upgrading

 		
 Installing extensions

 		
 Arch Linux

 		
 Install from Community

 		
 Installing extensions

 		
 Fedora

 		
 Install Mopidy

 		
 Installing extensions

 		
 macOS

 		
 Install from Homebrew

 		
 Upgrading

 		
 Installing extensions

 		
 Install from PyPI

 		
 Installing extensions

 		
 Raspberry Pi

 		
 How to for Raspbian

 		
 Testing sound output

 		
 Running

 		
 Running in a terminal

 		
 Starting

 		
 Stopping

 		
 Configuration

 		
 Running as a service

 		
 Configuration

 		
 Service user

 		
 Subcommands

 		
 Service management with systemd

 		
 Service management on Debian

 		
 Service on macOS

 		
 System service and PulseAudio

 		
 Configuration

 		
 Configuration file location

 		
 Editing the configuration

 		
 View effective configuration

 		
 Core configuration

 		
 Core section

 		
 Audio section

 		
 Logging section

 		
 Proxy section

 		
 Extension configuration

 		
 Adding new configuration values

 		
 Clients

 		
 Web clients

 		
 Web extensions

 		
 Non-extension web clients

 		
 Web-based MPD clients

 		
 Standalone applications

 		
 MPD clients

 		
 MPRIS clients

 		
 Troubleshooting

 		
 Getting help

 		
 Show effective configuration

 		
 Show installed dependencies

 		
 Debug logging

 		
 Track metadata

 		
 Debugging deadlocks

 		
 Debugging GStreamer

 		
 Mopidy-File

 		
 Configuration

 		
 Mopidy-M3U

 		
 Editing playlists

 		
 Configuration

 		
 Mopidy-Stream

 		
 Configuration

 		
 Mopidy-HTTP

 		
 Hosting web clients

 		
 Configuration

 		
 Mopidy-SoftwareMixer

 		
 Configuration

 		
 Audio sinks

 		
 Icecast

 		
 Known issues

 		
 Fallback stream

 		
 UPnP

 		
 UPnP MediaRenderer

 		
 Mopidy-MPD and upmpdcli

 		
 Mopidy-MPRIS and Rygel

 		
 UPnP clients

 		
 Changelog

 		
 v4.0.0 (UNRELEASED)

 		
 Dependencies

 		
 Core API

 		
 Backend API

 		
 Models

 		
 Audio API

 		
 Extension support

 		
 Internals

 		
 v3.4.2 (2023-11-01)

 		
 v3.4.1 (2022-12-07)

 		
 v3.4.0 (2022-11-28)

 		
 v3.3.0 (2022-04-29)

 		
 v3.2.0 (2021-07-08)

 		
 v3.1.1 (2020-12-26)

 		
 v3.1.0 (2020-12-16)

 		
 v3.0.2 (2020-04-02)

 		
 v3.0.1 (2019-12-22)

 		
 v3.0.0 (2019-12-22)

 		
 Dependencies

 		
 Logging

 		
 Core API

 		
 Backend API

 		
 Models

 		
 Extension support

 		
 HTTP frontend

 		
 MPD frontend

 		
 Local backend

 		
 Audio

 		
 Internals

 		
 History

 		
 Changelog 2.x series

 		
 v2.3.1 (2019-10-15)

 		
 v2.3.0 (2019-10-02)

 		
 v2.2.3 (2019-06-20)

 		
 v2.2.2 (2018-12-29)

 		
 v2.2.1 (2018-10-15)

 		
 v2.2.0 (2018-09-30)

 		
 v2.1.0 (2017-01-02)

 		
 v2.0.1 (2016-08-16)

 		
 v2.0.0 (2016-02-15)

 		
 Changelog 1.x series

 		
 v1.1.2 (2016-01-18)

 		
 v1.1.1 (2015-09-14)

 		
 v1.1.0 (2015-08-09)

 		
 v1.0.8 (2015-07-22)

 		
 v1.0.7 (2015-06-26)

 		
 v1.0.6 (2015-06-25)

 		
 v1.0.5 (2015-05-19)

 		
 v1.0.4 (2015-04-30)

 		
 v1.0.3 (2015-04-28)

 		
 v1.0.2 (2015-04-27)

 		
 v1.0.1 (2015-04-23)

 		
 v1.0.0 (2015-03-25)

 		
 Changelog 0.x series

 		
 v0.19.5 (2014-12-23)

 		
 v0.19.4 (2014-09-01)

 		
 v0.19.3 (2014-08-03)

 		
 v0.19.2 (2014-07-26)

 		
 v0.19.1 (2014-07-23)

 		
 v0.19.0 (2014-07-21)

 		
 v0.18.3 (2014-02-16)

 		
 v0.18.2 (2014-02-16)

 		
 v0.18.1 (2014-01-23)

 		
 v0.18.0 (2014-01-19)

 		
 v0.17.0 (2013-11-23)

 		
 v0.16.1 (2013-11-02)

 		
 v0.16.0 (2013-10-27)

 		
 v0.15.0 (2013-09-19)

 		
 v0.14.2 (2013-07-01)

 		
 v0.14.1 (2013-04-28)

 		
 v0.14.0 (2013-04-28)

 		
 v0.13.0 (2013-03-31)

 		
 v0.12.0 (2013-03-12)

 		
 v0.11.1 (2012-12-24)

 		
 v0.11.0 (2012-12-24)

 		
 v0.10.0 (2012-12-12)

 		
 v0.9.0 (2012-11-21)

 		
 v0.8.1 (2012-10-30)

 		
 v0.8.0 (2012-09-20)

 		
 v0.7.3 (2012-08-11)

 		
 v0.7.2 (2012-05-07)

 		
 v0.7.1 (2012-04-22)

 		
 v0.7.0 (2012-02-25)

 		
 v0.6.1 (2011-12-28)

 		
 v0.6.0 (2011-10-09)

 		
 v0.5.0 (2011-06-15)

 		
 v0.4.1 (2011-05-06)

 		
 v0.4.0 (2011-04-27)

 		
 v0.3.1 (2011-01-22)

 		
 v0.3.0 (2011-01-22)

 		
 v0.2.1 (2011-01-07)

 		
 v0.2.0 (2010-10-24)

 		
 v0.1.0 (2010-08-23)

 		
 v0.1.0a3 (2010-08-03)

 		
 v0.1.0a2 (2010-06-02)

 		
 v0.1.0a1 (2010-05-04)

 		
 v0.1.0a0 (2010-03-27)

 		
 Versioning

 		
 Release schedule

 		
 Authors

 		
 Sponsors

 		
 Discourse

 		
 Zulip

 		
 Contributing

 		
 Asking questions

 		
 Helping users

 		
 Issue guidelines

 		
 Pull request guidelines

 		
 Development environment

 		
 Initial setup

 		
 Install Mopidy the regular way

 		
 Make a development workspace

 		
 Make a virtualenv

 		
 Clone the repo from GitHub

 		
 Install Mopidy from the Git repo

 		
 Install development tools

 		
 Running Mopidy from Git

 		
 Running tests

 		
 Test it all

 		
 Running unit tests

 		
 Continuous integration

 		
 Style checking and linting

 		
 Writing documentation

 		
 Working on extensions

 		
 Installing extensions

 		
 Upgrading extensions

 		
 Contribution workflow

 		
 Setting up Git remotes

 		
 Creating a branch

 		
 Creating a pull request

 		
 Updating a pull request

 		
 Extension development

 		
 Anatomy of an extension

 		
 cookiecutter project template

 		
 Example README.rst

 		
 Example setup.py

 		
 Example __init__.py

 		
 Example frontend

 		
 Example backend

 		
 Example command

 		
 Example web application

 		
 Running an extension

 		
 Python conventions

 		
 Use of Mopidy APIs

 		
 Logging in extensions

 		
 Making HTTP requests from extensions

 		
 Proxies

 		
 User-Agent strings

 		
 Example using Requests sessions

 		
 Testing extensions

 		
 Testing approach

 		
 Testing the extension definition

 		
 Testing backend actors

 		
 Testing libraries

 		
 Testing playback controllers

 		
 Testing frontends

 		
 Triggering events

 		
 Code style

 		
 Release procedures

 		
 Releasing extensions

 		
 How to setup this release workflow

 		
 Releasing Mopidy itself

 		
 Preparations

 		
 Release

 		
 Post-release

 		
 API reference

 		
 Concepts

 		
 Architecture

 		
 mopidy.models â�� Data models

 		
 Basics

 		
 mopidy.core â�� Core API

 		
 Frontend API

 		
 mopidy.backend â�� Backend API

 		
 mopidy.ext â�� Extension API

 		
 Web/JavaScript

 		
 HTTP server side API

 		
 HTTP JSON-RPC API

 		
 Mopidy.js JavaScript library

 		
 Audio

 		
 mopidy.audio â�� Audio API

 		
 mopidy.mixer â�� Audio mixer API

 		
 Utilities

 		
 mopidy.commands â�� Commands API

 		
 mopidy.config â�� Config API

 		
 mopidy.httpclient â�� HTTP Client helpers

 		
 mopidy.zeroconf â�� Zeroconf API

 		
 mopidy command

 		
 Synopsis

 		
 Description

 		
 Options

 		
 Built in commands

 		
 Extension commands

 		
 Files

 		
 Examples

 		
 Reporting bugs

 		
 Glossary

_images/graphviz-a14e4b5d852bd9aec350facc80b8f4541e1fee83.png
Playback
controller

Tracklist Playlists Library
controller controller controller
Spotify backend Local backend

History
controller

_images/graphviz-d04fde34b13a33e75122334731f519a0fcc41f07.png
STOPPED

_images/graphviz-80118b52f105eccd5a586c53fc677cdc99ad4e9c.png
MPD MPRIS Scrobbler
frontend frontend frontend frontend

_images/graphviz-91628d0779b8168c27aead76f0d777a0cbff2834.png
Local
library
provider

Local backend

Local
playback
provider

Spotify
playback
provider

Spotify backend

Spotify
playlists
provider

Spotify service

_static/file.png

_images/graphviz-ebd576f26593afb9abb135d66426cc6771073f12.png
Multiple frontends

_static/minus.png

_static/mopidy.png
Mopidy J

_static/plus.png

