Extension development

Mopidy started as simply an MPD server that could play music from Spotify. Early on, Mopidy got multiple “frontends” to expose Mopidy to more than just MPD clients: for example the scrobbler frontend that scrobbles your listening history to your Last.fm account, the MPRIS frontend that integrates Mopidy into the Ubuntu Sound Menu, and the HTTP server and JavaScript player API making web based Mopidy clients possible. In Mopidy 0.9 we added support for multiple music sources without stopping and reconfiguring Mopidy: for example the local backend for playing music from your disk, the stream backend for playing Internet radio streams, and the Spotify and SoundCloud backends, for playing music directly from those services.

All of these are examples of what you can accomplish by creating a Mopidy extension. If you want to create your own Mopidy extension for something that does not exist yet, this guide to extension development will help you get your extension running in no time, and make it feel the way users would expect your extension to behave.

Anatomy of an extension

Extensions are located in a Python package called mopidy_something where “something” is the name of the application, library or web service you want to integrate with Mopidy. So, for example, if you plan to add support for a service named Soundspot to Mopidy, you would name your extension’s Python package mopidy_soundspot.

The extension must be shipped with a setup.py file and be registered on PyPI. The name of the distribution on PyPI would be something like “Mopidy-Soundspot”. Make sure to include the name “Mopidy” somewhere in that name and that you check the capitalization. This is the name users will use when they install your extension from PyPI.

Mopidy extensions must be licensed under an Apache 2.0 (like Mopidy itself), BSD, MIT or more liberal license to be able to be enlisted in the Mopidy documentation. The license text should be included in the LICENSE file in the root of the extension’s Git repo.

Combining this together, we get the following folder structure for our extension, Mopidy-Soundspot:

mopidy-soundspot/           # The Git repo root
    LICENSE                 # The license text
    MANIFEST.in             # List of data files to include in PyPI package
    README.rst              # Document what it is and how to use it
    mopidy_soundspot/       # Your code
        ext.conf            # Default config for the extension
    setup.py                # Installation script

Example content for the most important files follows below.

cookiecutter project template

We’ve also made a cookiecutter project template for creating new Mopidy extensions. If you install cookiecutter and run a single command, you’re asked a few questions about the name of your extension, etc. This is used to create a folder structure similar to the above, with all the needed files and most of the details filled in for you. This saves you a lot of tedious work and copy-pasting from this howto. See the readme of cookiecutter-mopidy-ext for further details.

Example README.rst

The README file should quickly explain what the extension does, how to install it, and how to configure it. It should also contain a link to a tarball of the latest development version of the extension. It’s important that this link ends with #egg=Mopidy-Something-dev for installation using pip install Mopidy-Something==dev to work.


`Mopidy <http://www.mopidy.com/>`_ extension for playing music from
`Soundspot <http://soundspot.example.com/>`_.

Requires a Soundspot Platina subscription and the pysoundspot library.


Install by running::

    sudo pip install Mopidy-Soundspot

Or, if available, install the Debian/Ubuntu package from `apt.mopidy.com


Before starting Mopidy, you must add your Soundspot username and password
to the Mopidy configuration file::

    username = alice
    password = secret

Project resources

- `Source code <https://github.com/mopidy/mopidy-soundspot>`_
- `Issue tracker <https://github.com/mopidy/mopidy-soundspot/issues>`_
- `Development branch tarball <https://github.com/mopidy/mopidy-soundspot/tarball/master#egg=Mopidy-Soundspot-dev>`_


v0.1.0 (2013-09-17)

- Initial release.

Example setup.py

The setup.py file must use setuptools, and not distutils. This is because Mopidy extensions use setuptools’ entry point functionality to register themselves as available Mopidy extensions when they are installed on your system.

The example below also includes a couple of convenient tricks for reading the package version from the source code so that it is defined in a single place, and to reuse the README file as the long description of the package for the PyPI registration.

The package must have install_requires on setuptools and Mopidy >= 0.14 (or a newer version, if your extension requires it), in addition to any other dependencies required by your extension. If you implement a Mopidy frontend or backend, you’ll need to include Pykka >= 1.1 in the requirements. The entry_points part must be included. The mopidy.ext part cannot be changed, but the innermost string should be changed. It’s format is ext_name = package_name:Extension. ext_name should be a short name for your extension, typically the part after “Mopidy-” in lowercase. This name is used e.g. to name the config section for your extension. The package_name:Extension part is simply the Python path to the extension class that will connect the rest of the dots.

from __future__ import absolute_import, unicode_literals

import re
from setuptools import setup, find_packages

def get_version(filename):
    content = open(filename).read()
    metadata = dict(re.findall("__([a-z]+)__ = '([^']+)'", content))
    return metadata['version']

    license='Apache License, Version 2.0',
    author='Your Name',
    author_email='[email protected]',
    description='Very short description',
    packages=find_packages(exclude=['tests', 'tests.*']),
        'Mopidy >= 0.14',
        'Pykka >= 1.1',
        'mopidy.ext': [
            'soundspot = mopidy_soundspot:Extension',
        'Environment :: No Input/Output (Daemon)',
        'Intended Audience :: End Users/Desktop',
        'License :: OSI Approved :: Apache Software License',
        'Operating System :: OS Independent',
        'Programming Language :: Python :: 2',
        'Topic :: Multimedia :: Sound/Audio :: Players',

To make sure your README, license file and default config file is included in the package that is uploaded to PyPI, we’ll also need to add a MANIFEST.in file:

include LICENSE
include MANIFEST.in
include README.rst
include mopidy_soundspot/ext.conf

For details on the MANIFEST.in file format, check out the distutils docs. check-manifest is a very useful tool to check your MANIFEST.in file for completeness.

Example __init__.py

The __init__.py file should be placed inside the mopidy_soundspot Python package.

The root of your Python package should have an __version__ attribute with a PEP 386 compliant version number, for example “0.1”. Next, it should have a class named Extension which inherits from Mopidy’s extension base class, mopidy.ext.Extension. This is the class referred to in the entry_points part of setup.py. Any imports of other files in your extension, outside of Mopidy and it’s core requirements, should be kept inside methods. This ensures that this file can be imported without raising ImportError exceptions for missing dependencies, etc.

The default configuration for the extension is defined by the get_default_config() method in the Extension class which returns a ConfigParser compatible config section. The config section’s name must be the same as the extension’s short name, as defined in the entry_points part of setup.py, for example soundspot. All extensions must include an enabled config which normally should default to true. Provide good defaults for all config values so that as few users as possible will need to change them. The exception is if the config value has security implications; in that case you should default to the most secure configuration. Leave any configurations that don’t have meaningful defaults blank, like username and password. In the example below, we’ve chosen to maintain the default config as a separate file named ext.conf. This makes it easy to include the default config in documentation without duplicating it.

This is mopidy_soundspot/__init__.py:

from __future__ import absolute_import, unicode_literals

import logging
import os

from mopidy import config, exceptions, ext

__version__ = '0.1'

# If you need to log, use loggers named after the current Python module
logger = logging.getLogger(__name__)

class Extension(ext.Extension):

    dist_name = 'Mopidy-Soundspot'
    ext_name = 'soundspot'
    version = __version__

    def get_default_config(self):
        conf_file = os.path.join(os.path.dirname(__file__), 'ext.conf')
        return config.read(conf_file)

    def get_config_schema(self):
        schema = super(Extension, self).get_config_schema()
        schema['username'] = config.String()
        schema['password'] = config.Secret()
        return schema

    def get_command(self):
        from .commands import SoundspotCommand
        return SoundspotCommand()

    def validate_environment(self):
        # Any manual checks of the environment to fail early.
        # Dependencies described by setup.py are checked by Mopidy, so you
        # should not check their presence here.

    def setup(self, registry):
        # You will typically only do one of the following things in a
        # single extension.

        # Register a frontend
        from .frontend import SoundspotFrontend
        registry.add('frontend', SoundspotFrontend)

        # Register a backend
        from .backend import SoundspotBackend
        registry.add('backend', SoundspotBackend)

        # Or nothing to register e.g. command extension

And this is mopidy_soundspot/ext.conf:

enabled = true
username =
password =

For more detailed documentation on the extension class, see the mopidy.ext – Extension API.

Example frontend

If you want to use Mopidy’s core API from your extension, then you want to implement a frontend.

The skeleton of a frontend would look like this. Notice that the frontend gets passed a reference to the core API when it’s created. See the Frontend API for more details.

import pykka

from mopidy import core

class SoundspotFrontend(pykka.ThreadingActor, core.CoreListener):
    def __init__(self, config, core):
        super(SoundspotFrontend, self).__init__()
        self.core = core

    # Your frontend implementation

Example backend

If you want to extend Mopidy to support new music and playlist sources, you want to implement a backend. A backend does not have access to Mopidy’s core API at all, but it does have a bunch of interfaces it can implement to extend Mopidy.

The skeleton of a backend would look like this. See mopidy.backend — Backend API for more details.

import pykka

from mopidy import backend

class SoundspotBackend(pykka.ThreadingActor, backend.Backend):
    def __init__(self, config, audio):
        super(SoundspotBackend, self).__init__()
        self.audio = audio

    # Your backend implementation

Example command

If you want to extend the Mopidy with a new helper not run from the server, such as scanning for media, adding a command is the way to go. Your top level command name will always match your extension name, but you are free to add sub-commands with names of your choosing.

The skeleton of a command would look like this. See mopidy.commands — Commands API for more details.

from mopidy import commands

class SoundspotCommand(commands.Command):
    help = 'Some text that will show up in --help'

    def __init__(self):
        super(SoundspotCommand, self).__init__()

    def run(self, args, config, extensions):
       # Your command implementation
       return 0

Example web application

As of Mopidy 0.19, extensions can use Mopidy’s built-in web server to host static web clients as well as Tornado and WSGI web applications. For several examples, see the HTTP server side API docs or explore with Mopidy-API-Explorer extension.

Running an extension

Once your extension is ready to go, to see it in action you’ll need to register it with Mopidy. Typically this is done by running python setup.py install from your extension’s Git repo root directory. While developing your extension and to avoid doing this every time you make a change, you can instead run python setup.py develop to effectively link Mopidy directly with your development files.

Python conventions

In general, it would be nice if Mopidy extensions followed the same Code style as Mopidy itself, as they’re part of the same ecosystem. Among other things, the code style guide explains why all the above examples start with from __future__ import absolute_import, unicode_literals.

Use of Mopidy APIs

When writing an extension, you should only use APIs documented at API reference. Other parts of Mopidy, like mopidy.internal, may change at any time and are not something extensions should use.

Mopidy performs type checking to help catch extension bugs. This applies to both frontend calls into core and return values from backends. Additionally model fields always get validated to further guard against bad data.

Logging in extensions

For servers like Mopidy, logging is essential for understanding what’s going on. We use the logging module from Python’s standard library. When creating a logger, always namespace the logger using your Python package name as this will be visible in Mopidy’s debug log:

import logging

logger = logging.getLogger('mopidy_soundspot')

# Or even better, use the Python module name as the logger name:
logger = logging.getLogger(__name__)

When logging at logging level info or higher (i.e. warning, error, and critical, but not debug) the log message will be displayed to all Mopidy users. Thus, the log messages at those levels should be well written and easy to understand.

As the logger name is not included in Mopidy’s default logging format, you should make it obvious from the log message who is the source of the log message. For example:

Loaded 17 Soundspot playlists

Is much better than:

Loaded 17 playlists

If you want to turn on debug logging for your own extension, but not for everything else due to the amount of noise, see the docs for the loglevels/* config section.

Making HTTP requests from extensions

Many Mopidy extensions need to make HTTP requests to use some web API. Here’s a few recommendations to those extensions.


If you make HTTP requests please make sure to respect the proxy configs, so that all the requests you make go through the proxy configured by the Mopidy user. To make this easier for extension developers, the helper function mopidy.httpclient.format_proxy() was added in Mopidy 1.1. This function returns the proxy settings formatted the way Requests expects.

User-Agent strings

When you make HTTP requests, it’s helpful for debugging and usage analysis if the client identifies itself with a proper User-Agent string. In Mopidy 1.1, we added the helper function mopidy.httpclient.format_user_agent(). Here’s an example of how to use it:

>>> from mopidy import httpclient
>>> import mopidy_soundspot
>>> httpclient.format_user_agent('%s/%s' % (
...     mopidy_soundspot.Extension.dist_name, mopidy_soundspot.__version__))
u'Mopidy-SoundSpot/2.0.0 Mopidy/1.0.7 Python/2.7.10'

Example using Requests sessions

Most Mopidy extensions that make HTTP requests use the Requests library to do so. When using Requests, the most convenient way to make sure the proxy and User-Agent header is set properly is to create a Requests session object and use that object to make all your HTTP requests:

from mopidy import httpclient

import requests

import mopidy_soundspot

def get_requests_session(proxy_config, user_agent):
    proxy = httpclient.format_proxy(proxy_config)
    full_user_agent = httpclient.format_user_agent(user_agent)

    session = requests.Session()
    session.proxies.update({'http': proxy, 'https': proxy})
    session.headers.update({'user-agent': full_user_agent})

    return session

# ``mopidy_config`` is the config object passed to your frontend/backend
# constructor
session = get_requests_session(
    user_agent='%s/%s' % (

response = session.get('http://example.com')
# Now do something with ``response`` and/or make further requests using the
# ``session`` object.

For further details, see Requests’ docs on session objects.